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Is there a single principle by which neural operations can account for perception,
cognition,  action,  and  even  consciousness?  A  strong  candidate  is  now taking
shape in the form of “predictive processing”. On this theory, brains engage in pre-
dictive inference on the causes of sensory inputs by continuous minimization of
prediction errors or informational “free energy”. Predictive processing can account,
supposedly, not only for perception, but also for action and for the essential con-
tribution of the body and environment in structuring sensorimotor interactions. In
this paper I draw together some recent developments within predictive processing
that involve predictive modelling of internal physiological states (interoceptive in-
ference), and integration with “enactive” and “embodied” approaches to cognitive
science (predictive perception of sensorimotor contingencies). The upshot is a de-
velopment of predictive processing that originates, not in Helmholtzian percep-
tion-as-inference, but rather in 20th-century cybernetic principles that emphasized
homeostasis and predictive control. This way of thinking leads to (i) a new view of
emotion as active interoceptive inference; (ii) a common predictive framework link-
ing experiences of body ownership,  emotion,  and exteroceptive perception;  (iii)
distinct interpretations of active inference as involving disruptive and disambigu-
atory—not just confirmatory—actions to test perceptual hypotheses; (iv) a neuro-
cognitive operationalization of the “mastery of sensorimotor contingencies” (where
sensorimotor contingencies reflect the rules governing sensory changes produced
by various actions); and (v) an account of the sense of subjective reality of percep-
tual contents (“perceptual presence”) in terms of the extent to which predictive
models encode potential sensorimotor relations (this being “counterfactual rich-
ness”). This is rich and varied territory, and surveying its landmarks emphasizes
the need for experimental tests of its key contributions.
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1 Introduction

An increasingly popular theory in cognitive sci-
ence claims that brains are essentially predic-
tion  machines  (Hohwy 2013).  The  theory  is
variously known as the Bayesian brain (Knill &
Pouget 2004;  Pouget et  al. 2013),  predictive
processing (Clark 2013;  Clark this collection),
and the predictive mind (Hohwy 2013;  Hohwy
this collection), among others; here we use the
term PP (predictive processing).  (See  Table 1
for a glossary of technical terms.) At its most
fundamental, PP says that perception is the res-

ult of the brain inferring the most likely causes
of its sensory inputs by minimizing the differ-
ence between actual sensory signals and the sig-
nals expected on the basis of continuously up-
dated predictive models. Arguably, PP provides
the most  complete framework to date for  ex-
plaining  perception,  cognition,  and  action  in
terms of fundamental theoretical principles and
neurocognitive architectures. In this paper I de-
scribe a version of PP that is distinguished by
(i) an emphasis on predictive modelling of in-
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ternal physiological states and (ii) engagement
with alternative frameworks under the banner
of “enactive” and “embodied” cognitive science
(Varela et al. 1993).

I  first  identify an unusual  starting point
for PP, not in Helmholtzian perception-as-infer-
ence,  but  in  the  mid  20th-century  cybernetic
theories associated with  W. Ross Ashby (1952,
1956; Conant & Ashby 1970). Linking these ori-
gins  to their  modern expression  in  Karl Fris-
ton’s “free energy principle” (2010), perception
emerges  as  a  consequence of  a  more  funda-
mental  imperative  towards  homeostasis  and
control, and not as a process designed to furnish
a detailed inner “world model” suitable for cog-
nition and action planning. The ensuing view of
PP, while still  fluently accounting for (extero-
ceptive) perception, turns out to be more natur-
ally applicable to the predictive perception of
internal bodily states, instantiating a process of
interoceptive inference (Seth 2013;  Seth et  al.
2011). This concept provides a natural way of
thinking of the neural substrates of emotional
and  mood  experiences,  and  also  describes  a
common mechanism by which interoceptive and
exteroceptive  signals  can  be  integrated  to
provide a unified experience of body ownership
and  conscious  selfhood  (Blanke &  Metzinger
2009; Limanowski & Blankenburg 2013).

The focus on embodiment leads to distinct
interpretations of active inference, which in gen-
eral refers to the selective sampling of sensory
signals so as to improve perceptual predictions.
The simplest interpretation of active inference is
the  changing  of  sensory  data  (via  selective
sampling)  to  conform  to  current  predictions
(Friston et al. 2010). However, by analogy with
hypothesis  testing  in  science,  active  inference
can  also  involve  seeking  evidence  that  goes
against current predictions, or that  disambigu-
ates multiple competing hypotheses. A nice ex-
ample of the latter comes from self-modelling in
evolutionary robotics, where multiple competing
self-models are used to specify actions that are
most likely to provide disambiguatory sensory
evidence  (Bongard et  al. 2006).  I  will  spend
more  time  on  this  example  later.  Crucially,
these different senses of active inference rest on
the  capacity  of  predictive  models  to  encode

counterfactual relations  linking  potential  (but
not necessarily executed) actions to their expec-
ted sensory consequences (Friston et al. 2012;
Seth 2014b). It also implies the involvement of
model  comparison and selection—not just  the
optimization  of  parameters  assuming  a  single
model. These points represent significant devel-
opments in the basic infrastructure of PP.

The notion of counterfactual predictions
connects PP with what at first glance seems
to be its natural opponent: “enactive” theories
of perception and cognition that explicitly re-
ject internal models or representations (Clark
this collection; Hutto & Myin 2013; Thompson
&  Varela 2001).  Central  to  the  enactive  ap-
proach are notions of “sensorimotor contingen-
cies”  and  their  “mastery”  (O’Regan &  Noë
2001), where a sensorimotor contingency refers
to a rule governing how sensory signals change
in response to action. On this approach, the
perceptual experience of (for example) redness
is given by an implicit knowledge (mastery) of
the way red things behave given certain pat-
terns of sensorimotor activity. This mastery of
sensorimotor contingencies is also said to un-
derpin  perceptual  presence:  the sense of  sub-
jective  reality  of  the  contents  of  perception
(Noë 2006). From the perspective of PP, mas-
tery  of  a  sensorimotor  contingency  corres-
ponds  to  the  learning  of  a  counterfactually-
equipped predictive  model  connecting  poten-
tial actions to expected sensory consequences.
The  resulting  theory  of  PPSMC (Predictive
Perception  of  SensoriMotor  Contingencies),
Seth 2014b) provides a much needed reconcili-
ation  of  enactive  and  predictive  theories  of
perception and action. It also provides a solu-
tion  to  the  challenge  of  perceptual  presence
within the setting of PP: perceptual presence
obtains when the underlying predictive models
are  counterfactually rich,  in the sense of  en-
coding a rich repertoire of potential (but not
necessarily  executed)  sensorimotor  relations.
This  approach  also  helps  explain  instances
where  perceptual  presence  seems to be  lack-
ing, such as in synaesthesia. 

This is both a conceptual and theoretical
paper. Space limitations preclude any signific-
ant treatment of the relevant experimental lit-
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erature.  However,  even  an  exhaustive  treat-
ment would reveal that this literature so far
provides  only  circumstantial  support  for  the
basics of PP, let alone for the extensions de-
scribed here. Yet an advantage of PP theories
is that they are grounded in concrete compu-
tational processes and neurocognitive architec-
tures,  giving  us  confidence  that  informative
experimental tests can be devised. Implement-
ing such an experimental agenda stands as a
critical challenge for the future.

2 The predictive brain and its cybernetic 
origins

2.1 Predictive processing: The basics

PP starts with the assumption that in order to
support adaptive responses, the brain must dis-
cover information about the external “hidden”
causes of sensory signals. It lacks any direct ac-
cess to these causes, and can only use informa-
tion found in the flux of sensory signals them-
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Figure 1: A. Schemas of hierarchical predictive coding across three cortical regions; the lowest on the left (R1) and
the highest on the right (R3). Bottom-up projections (red) originate from “error units” (orange) in superficial cortical
layers and terminate on “state units” (light blue) in the deep (infragranular) layers of their targets; while top-down pro -
jections (dark blue) convey predictions originating in deep layers and project to the superficial layers of their targets.
Prediction errors are associated with precisions, which determine the relative influence of bottom-up and top-down sig-
nal flow via precision weighting (dashed lines). B. The influence of precisions on Bayesian inference and predictive cod-
ing. The curves show probability distributions over the value of a sensory signal (x-axis). On the left, high precision-
weighting of sensory signals (red) enhances their influence on the posterior (green) and expectation (dotted line) as
compared to the prior (blue). On the right, low sensory precision weighting has the opposite effect. Figure adapted
from Seth (2013).
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selves. According to PP, brains meet this chal-
lenge by attempting to predict sensory inputs
on the basis of their  own emerging models of
the causes of these inputs, with prediction er-
rors being used to update these models so as to
minimize discrepancies. The idea is that a brain
operating this way will come to encode (in the
form of predictive or generative models) a rich
body of information about the sources of signals
by which it is regularly perturbed (Clark 2013).

Applied  to  cortical  hierarchies,  PP over-
turns  classical  notions  of  perception  that  de-
scribe a largely “bottom-up” process of evidence
accumulation or feature detection. Instead, PP
proposes that perceptual content is determined
by top-down predictive  signals  emerging  from
multi-layered  and hierarchically-organized  gen-
erative models of the causes of sensory signals
(Lee & Mumford 2003). These models are con-
tinually  refined  by mismatches  (prediction er-
rors) between predicted signals and actual sig-
nals across hierarchical levels, which iteratively
update predictive models via approximations to
Bayesian inference (see  Figure 1). This means
that the brain can induce accurate generative
models of environmental hidden causes by oper-
ating only on signals to which it has direct ac-
cess:  predictions and  prediction errors.  It  also
means that even low-level perceptual content is
determined via cascades of predictions flowing
from very general abstract expectations, which
constrain successively more fine-grained predic-
tions.

Two further aspects of PP need to be em-
phasized from the outset. First, sensory predic-
tion errors can be minimized either “passively”,
by changing predictive models to fit incoming
data  (perceptual  inference),  or  “actively”,  by
performing actions  to  confirm or  test  sensory
predictions  (active  inference).  In  most  cases
these processes are assumed to unfold continu-
ously  and  simultaneously,  underlining  a  deep
continuity between perception and action (Fris-
ton et al. 2010; Verschure et al. 2003). This pro-
cess of active inference will play a key role in
much of what follows. Second, predictions and
prediction errors in a Bayesian framework have
associated  precisions (inverse variances,  Figure
1). The precision of a prediction error is an in-

dicator of its reliability, and hence can be used
to determine its influence in updating top-down
predictive models. Precisions, like mean values,
are not given but must be inferred on the basis
of top-down models and incoming data; so PP
requires  that  agents  have  expectations  about
precisions that are themselves updated as new
data arrive (and new precisions can be estim-
ated). Precision expectations can therefore bal-
ance the influence of  different prediction-error
sources  on the updating of  predictive models.
And  if  prediction  errors  have  low  (expected)
precision, predictive models may overwhelm er-
ror signals (hallucination) or elicit actions that
confirm sensory predictions (active inference). 

A picture emerges in which cortical  net-
works engage in recurrent interactions whereby
bottom-up prediction errors are continuously re-
conciled with top-down predictions at multiple
hierarchical levels—a process modulated at all
times  by  precision  weighting.  The  result  is  a
brain that not only encodes information about
the  sources  of  signals  that  impinge  upon  its
sensory surfaces, but that also encodes informa-
tion  about  how its  own actions  interact  with
these sources in specifying sensory signals. Per-
ception involves updating the parameters of the
model to fit the data;  action involves changing
sensory data to fit (or test) the model; and at-
tention corresponds to optimizing model updat-
ing by giving preference to sensory data that
are expected to carry more information, which
is called precision weighting (Hohwy 2013). This
view  of  the  brain  is  shamelessly  model-based
and representational (though with a finessed no-
tion of representation),  yet it  also deeply em-
beds the close coupling of perception and action
and, as we will see, the importance of the body
in the mediation of this interaction.

2.2 Predictive processing and the free 
energy principle

PP can be considered a special case of the free
energy principle, according to which perceptual
inference and action emerge as a consequence of
a  more  fundamental  imperative  towards  the
avoidance of “surprising” events (Friston 2005,
2009,  2010).  On the free energy principle,  or-
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ganisms – by dint of their continued survival—
must minimize the long-run average surprise of
sensory  states,  since  surprising  sensory  states
are likely to reflect conditions incompatible with
continued existence (think of a fish out of wa-
ter). “Surprise” is not used here in the psycholo-
gical  sense,  but  in  an  information-theoretic
sense—as  the  negative  log  probability  of  an
event’s occurrence (roughly, the unlikeliness of
the occurrence of an event).

The  connection  with  PP  arises  because
agents  cannot  directly  evaluate  the  (informa-
tion-theoretic)  surprise  associated  with  an
event,  since  this  would  require—impossibly—
the  agent  to  average  over  all  possible  occur-
rences of the event in all possible situations. In-
stead, the agent can only maintain a lower limit
on  surprise  by  minimizing  the  difference
between actual sensory signals and those signals
predicted according to a generative or predictive
model. This difference is free energy, which, un-
der fairly general assumptions, is the long-run
sum of prediction error.

An  attractive  feature  of  the  free  energy
principle  is  that  it  brings  to  the  table  a  rich
mathematical framework that shows how PP can
work in practice. Formally, PP depends on estab-
lished principles of Bayesian inference and model
specification, whereby the most likely causes of
observed data (posterior) are estimated based on
optimally combining  prior expectations of  these
causes with observed data, by using a (generative,
predictive) model of the data that would be ob-
served given a particular set of causes (likelihood).
(See  Figure 1 for an example of priors and pos-
teriors.) In practice, because optimal Bayesian in-
ference is usually intractable, a variety of approx-
imate methods can be applied (Hinton & Dayan
1996;  Neal & Hinton 1998). Friston’s framework
appeals  to  previously  worked-out  “variational”
methods, which take advantage of certain approx-
imations (e.g., Gaussianity, independence of tem-
poral  scales)—thus  allowing  a  potentially  neat
mapping onto neurobiological quantities (Friston
et al. 2006).1 
1 Some challenging questions surface here as to whether prediction

errors are used to update priors, which corresponds to standard
Bayesian inference, or whether they are used to update the un-
derlying generative/predictive model, which corresponds to learn-
ing. 

The free energy principle also emphasizes
action as a means of prediction error minimiza-
tion, this being active inference. In general, act-
ive inference involves the selective sampling of
sensory signals so as to minimize uncertainty in
perceptual hypotheses (minimizing the entropy
of the posterior). In one sense this means that
actions are selected to provide evidence compat-
ible with current perceptual predictions. This is
the most standard interpretation of the concept,
since it corresponds most directly to minimiza-
tion of prediction error (Friston 2009). However,
as we will see, actions can also be selected on
the basis of an attempt to find evidence going
against current hypotheses, and/or to efficiently
disambiguate  between  competing  hypotheses.
These finessed senses of active inference repres-
ent developments of the free energy framework.
Importantly, action itself can be thought of as
being  brought  about  by  the  minimization  of
proprioceptive prediction errors via the engage-
ment of classical reflex arcs (Adams et al. 2013;
Friston et  al. 2010).  This  requires  transiently
low precision-weighting of these errors (or else
predictions would simply be updated instead),
which is compatible with evidence showing sens-
ory  attenuation  during  self-generated  move-
ments (Brown et al. 2013). 

A more controversial aspect of the free en-
ergy principle is its claimed generality (Hohwy
this collection). At least as described by Friston,
it  claims to account for  adaptation at almost
any granularity of time and space, from macro-
scopic trends in evolution, through development
and maturation, to signalling in neuronal hier-
archies  (Friston 2010).  However,  in  some  of
these interpretations reliance on predictive mod-
elling is only implicit; for example the body of a
fish can be considered to be an implicit model
of the fluid dynamics and other affordances of
its watery environment (see section  2.3). I am
not  concerned  here  with  these  broader  inter-
pretations,  but  will  focus  on  those  cases  in
which biological (neural) mechanisms plausibly
implement explicit predictive inference via ap-
proximations  to  Bayesian  computations—
namely,  the  Bayesian  brain  (Knill &  Pouget
2004; Pouget et al. 2013). Here, the free energy
principle has potentially the greatest explanat-

Seth, A. K. (2015). The Cybernetic Bayesian Brain - From Interoceptive Inference to Sensorimotor Contingencies.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 35(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570108 6 | 24

http://www.open-mind.net/
http://dx.doi.org/10.15502/9783958570108
http://www.open-mind.net/papers/@@chapters?nr=35


www.open-mind.net

ory power, especially given the convergence of
empirical evidence (see  Clark 2013 and  Hohwy
2013 for reviews) and computational modelling
showing how cortical microcircuits might imple-
ment approximate Bayesian inference (Bastos et
al. 2012).

2.3 Predictive processing, free energy, 
and cybernetics

Typically, the origins of PP are traced to the
work of the 19th Century physiologist Hermann
von Helmholtz, who first formalized the idea of
perception as inference. However, the Helmholt-

zian view is rather passive, inasmuch as there is
little discussion of active inference or behaviour.
The close coupling of perception and action em-
phasized in the free energy principle points in-
stead  to  a  deep  connection  between  PP  and
mid-twentieth-century cybernetics. This is most
obvious in the works of W. Ross Ashby (Ashby
1952;  1956;  Conant & Ashby 1970) but is also
evident more generally (Dupuy 2009;  Pickering
2010). Importantly,  cybernetics  adopted as its
central focus the prediction and control of beha-
viour in so-called teleological or purposeful ma-
chines.2 More  precisely,  cybernetic  theorists
were (are) interested in systems that appear to
have goals (i.e., teleological) and that particip-
ate in circular causal chains (i.e., involving feed-
back) coupling goal-directed sensation and ac-
tion. 

Two key insights from the first wave of cy-
bernetics  usefully  anticipate  the  core  develop-
ments of PP within cognitive science. These are
both associated with Ashby, a key figure in the
movement  and  often  considered  its  leader,  at
least outside the USA (Figure 2). 

The first  insight consists in an emphasis
on  the  homeostasis  of  internal  essential  vari-
ables,  which,  in  physiological  settings,  corres-
pond  to  quantities  like  blood  pressure,  heart
rate, blood sugar levels, and the like. In Ashby’s
framework, when essential variables move bey-
ond specific viability limits, adaptive processes
are  triggered  that  re-parameterize  the  system
until  it  reaches  a  new  equilibrium  in  which
homeostasis is restored (Ashby 1952). Such sys-
tems  are,  in  Ashby’s  terminology,  ultrastable,
since they embody (at least) two levels of feed-
back: a first-order feedback that homeostatically
regulates essential variables (like a thermostat)
and a second-order feedback that allostatically3

re-organises  a  system’s  input–output  relations
when  first-order  feedback  fails,  until  a  new
homeostatic regime is attained. In the most ba-
sic  case,  as  implemented  in  Ashby’s  famous
“homeostat” (Figure 2), this second-order feed-
back simply involves random changes to system
2 This underlines the close links between cybernetics and behaviour-

ism. Perhaps this explains why cybernetics was so reluctant to bring
phenomenology  into  its  remit,  an  exclusion  which,  looking  back,
seems like a missed opportunity.

3 Allostasis: the process of achieving homeostasis.
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Figure  2:  A. W. Ross Ashby, British psychiatrist and
pioneer of cybernetics (1903–1972). B. A schematic of ul-
trastability, based on Ashby’s notebooks. The system  R
homeostatically  maintains  its  essential  variables  (EVs)
within viability limits via first-order feedback with the
environment  E.  When first-order feedback fails, so that
EVs run out-of-bounds, second order “ultrastable” feed-
back is triggered so that S (an internal controller, poten-
tially model-based) changes the parameters of R govern-
ing the first-order feedback. S continually changes R until
homeostatic relations are regained, leaving the EVs again
within  bounds.  C.  Ashby’s  “homeostat”,  consisting  of
four  interconnected  ultrastable  systems,  forming  a  so-
called “multistable” system. D. One ultrastable unit from
the homeostat. Each unit had a trough of water with an
electric field gradient and a metal needle. Instability was
represented by the non-central needle positions, which on
occurring would alter the resistances connecting the units
via  discharge  through  capacitors.  For  more  details  see
Ashby (1952) and Pickering (2010).
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parameters until a new stable regime is reached.
The importance of this insight for PP is that it
locates the function of biological and cognitive
processes in generalizing homeostasis to ensure
that internal  essential  variables  remain within
expected ranges. 

Another  way  to  summarize  the  funda-
mental cybernetic principle is to say that adapt-
ive systems ensure their continued existence by
successfully  responding  to  environmental  per-
turbations so as to maintain their internal or-
ganization.  This  leads  to  the  second  insight,
evident in Ashby’s law of requisite variety. This
states that a successful control system must be
capable of entering at least as many states as
the system being controlled: “only variety can
force down variety” (Ashby 1956). This induces
a  functional  boundary between controller  and
environment  and  implies  a  minimum level  of
complexity for a successful controller, which is
determined by the causal complexity of the en-
vironmental states that constitute potential per-
turbations to a system’s essential variables. This
view was refined some years later, in a 1970 pa-
per written with Roger Conant entitled “Every
good regulator of a system must be a model of
that system” (Conant & Ashby 1970). This pa-
per builds on the law of requisite variety by ar-
guing (and attempting to formally show) that
the nature of a controller capable of suppressing
perturbations  imposed  by  an  external  system
(e.g.,  the  world)  must  instantiate  a  model  of
that system. This  provides a  clear  connection
with the free energy principle, which proposes
that adaptive systems minimize a limit on free
energy (long-run average surprise) by inducing
and refining a generative model of the causes of
sensory signals.  It also moves beyond Ashby’s
homeostat  by implying that  model-based  con-
trollers  can  engage  in  more  successful  multi-
level feedback than is possible by random vari-
ation of higher-order parameters.

Putting these insights  together  provides
a distinctive way of seeing the relevance of PP
to cognition and biological adaptation. It can
be summarized as follows. The purpose of cog-
nition (including perception and action) is to
maintain the homeostasis of essential variables
and  of  internal  organization  (ultrastability).

This implies the existence of a control mech-
anism with sufficient complexity to respond to
(i.e., suppress) the variety of perturbations it
encounters (law of requisite variety). Further,
this structure must instantiate a model of the
system to be controlled (good regulator  the-
orem),  where  the  system  includes  both  the
body and the environment (and their interac-
tions). As Ashby himself tells us “[t]he whole
function of  the brain can be summed up in:
error correction” (quoted in Clark 2013, p. 1).
Put  this  way,  perception  emerges  as  a  con-
sequence of a more fundamental imperative to-
wards organizational homeostasis, and not as
a  stage  in  some  process  of  internal  world-
model  construction.  This  view,  while  high-
lighting different origins, closely parallels the
assumptions  of  the  free  energy  principle  in
proposing  a  primary  imperative  towards  the
continued  survival  of  the  organism  (Friston
2010).

It may be surprising to consider the leg-
acy  of  cybernetics  in  this  light.  This  is  be-
cause many previous discussions of this legacy
focus on examples which show that complex,
apparently goal-directed behaviour can emerge
from  simple  mechanisms  interacting  with
structured  bodies  and  environments (Beer
2003;  Braitenberg 1984). On this more stand-
ard development, cybernetics challenges rather
than asserts the need for internal models and
representations: it is often taken to justify slo-
gans  of  the  sort  “the  world  is  its  own  best
model” (Brooks 1991). In fact, cybernetics is
agnostic with respect to the need for deploy-
ment of explicit internally-specified predictive
models.  If  environmental  circumstances  are
reasonably stable, and mappings between per-
turbations  and  (homeostatic)  responses  reas-
onably  straightforward,  then  the  good  regu-
lator  theorem can be  satisfied  by controllers
that only implicitly model their environments.
This is the case, for instance, in the Watt gov-
ernor: a device that is able exquisitely to con-
trol the output of (for instance) a steam en-
gine,  in  virtue  of  its  mechanism,  and  not
through the deployment of explicit predictive
models  or  representations  (see  Figure  3 and
Van Gelder 1995; note that the governor can
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be described as an implicit model since it has
variables – e.g., eccentricity of the metal balls
from the central column – which map onto en-
vironmental  variables  that  affect  the homeo-
static target – engine output). However, where
there  exist  many-to-many  mappings  between
sensory  states  and  their  probable  causes,  as
may be the case more often than not, it will
pay to engage explicit inferential processes in
order to extract the most probable causes of
sensory states, insofar as these causes threaten
the homeostasis of essential variables.

Figure  3:  The Watt  governor.  This  system,  a  central
contributor to the industrial revolution, enabled precise
control over the output of (for example) steam engines.
As the speed of the engine increases, power is supplied to
the governor (A) by a belt or chain, causing it to rotate
more rapidly so that the metal balls have more kinetic
energy. This causes the balls to rise (B), which closes the
throttle  valve  (C),  thereby  reducing  the  steam  flow,
which  in  turn reduces  engine speed (D).  The opposite
happens  when the engine  speed decreases,  so  that  the
governor maintains engine speed at a precise equilibrium.

In  summary,  rather  than  seeing  PP  as
originating solely in the Helmholtzian notion
of  “perception  as inference”,  it  is  fruitful  to
see it also as part of a process of model-based
predictive  control entailed  by  a  fundamental
imperative towards internal homeostasis. This
shift  in  perspective  reveals  a  distinctive
agenda for PP in cognitive science, to which I
shall now turn.

3 Interoceptive inference, emotion, and 
predictive selfhood

3.1 Interoceptive inference and emotion

Considering the cybernetic roots of PP, together
with the free energy principle, leads to a poten-
tially counterintuitive idea. This is that PP may
apply more naturally to interoception (the sense
of  the  internal  physiological  condition  of  the
body) than to  exteroception (the classic senses,
which  carry  signals  that  originate  in  the  ex-
ternal environment). This is because for an or-
ganism it is more important to avoid encounter-
ing  unexpected  interoceptive  states  than  to
avoid  encountering  unexpected  exteroceptive
states.  A level  of  blood oxygenation or  blood
sugar  that  is  unexpected  is  likely  to  be  bad
news for an organism, whereas unexpected ex-
teroceptive sensations (like novel visual inputs)
are less likely to be harmful and may in some
cases be desirable, as organisms navigate a del-
icate balance between exploration and exploita-
tion  (Seth 2014a),  testing  current  perceptual
hypotheses through active inference (see section
5, below), all ultimately in the service of main-
taining organismic homeostasis.

Perhaps  because  of  its  roots  in  Helm-
holtz,  PP has  largely  been  developed in  the
setting of visual neuroscience (Rao & Ballard
1999), with a related but somewhat independ-
ent  line  in  motor  control  (Wolpert &
Ghahramani 2000).  Recently,  an  explicit  ap-
plication of PP to interoception has been de-
veloped  (Seth 2013;  Seth &  Critchley 2013;
Seth et al. 2011; see also Gu et al. 2013). On
this theory of interoceptive inference (or equi-
valently  interoceptive predictive coding), emo-
tional  states  (i.e.,  subjective  feeling  states)
arise from top-down predictive inference of the
causes  of  interoceptive  sensory  signals  (see
Figure 4).  In direct analogy to exteroceptive
PP,  emotional  content  is  constitutively  spe-
cified by the content of top-down interoceptive
predictions at a given time, marking a distinc-
tion with the well-studied impact of expecta-
tions on subsequent emotional states (see e.g.,
Ploghaus et al. 1999;  Ueda et al. 2003). Fur-
thermore,  interoceptive  prediction  errors  can
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be minimized by (i) updating predictive mod-
els  (perception,  corresponding  to  new  emo-
tional  contents);  (ii)  changing  interoceptive
signals  through  engaging  autonomic  reflexes
(autonomic control or active inference); or (iii)
performing behaviour  so as  to alter  external
conditions  that  impact  on  internal  homeo-
stasis (allostasis;  Gu &  Fitzgerald 2014;  Seth
et al. 2011).

Consider  an  example  in  which  blood
sugar levels (an essential variable) fall towards
or beyond viability thresholds, reaching unex-
pected and undesirable values (Gu & Fitzger-
ald 2014; Seth et al. 2011). Under interocept-
ive  inference,  the  following  responses  ensue.
First,  interoceptive  prediction  error  signals
update top-down expectations, leading to sub-

jective  experiences  of  hunger  or  thirst  (for
sugary  things).  Because  these  feeling  states
are themselves surprising (and non-viable) in
the long run, they signal prediction errors at
hierarchically-higher  levels,  where  predictive
models integrate multimodal interoceptive and
exteroceptive  signals.  These  models  instanti-
ate  predictions  of  temporal  sequences  of
matched  exteroceptive  and  interoceptive  in-
puts, which flow down through the hierarchy.
The resulting cascade of prediction errors can
then  be  resolved  either  through  autonomic
control,  in  order  to  metabolize  bodily  fat
stores (active inference), or through allostatic
actions  involving  the  external  environment
(i.e., finding and eating sugary things). 

The  sequencing  and  balance  of  these
events  is  governed  by  relative  precisions  and
their  expectations.  Initially,  interoceptive  pre-
diction  errors  have  high  precision  (weighting)
given  a  higher-level  expectation  of  stable
homeostasis.  Whether  the  resulting  high-level
prediction  error  engages  autonomic  control  or
allostatic behaviour (or both) depends on the
precision weighting of the corresponding predic-
tion errors. If food is readily available, consum-
matory actions lead to food intake (as described
earlier, these actions are generated by the resol-
ution  of  proprioceptive  prediction  errors).  If
not, autonomic reflexes initiate the metaboliza-
tion of bodily fat stores, perhaps alongside ap-
petitive behaviours that are predicted to lead to
the availability of food, conditioned on perform-
ing these behaviours.4

3.2 Implications of interoceptive inference

Several interesting implications arise when con-
sidering emotion as resulting from interoceptive
inference (Seth 2013). First, the theory general-
izes previous “two factor” theories of  emotion
that see emotional content as resulting from an
interaction between the perception of physiolo-
4 It is interesting to consider possible dysfunctions in this process.

For example, if high-level predictions about the persistence of low
blood sugar become abnormally strong (i.e., low blood sugar be-
comes  chronically  expected),  allostatic  food-seeking  behaviours
may not occur. This process, akin to the transition from hallucin -
ation to delusion in perceptual inference (Fletcher & Frith 2009),
may help understand eating disorders in terms of dysfunctional
signalling of satiety. 

Seth, A. K. (2015). The Cybernetic Bayesian Brain - From Interoceptive Inference to Sensorimotor Contingencies.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 35(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570108 10 | 24

Figure 4: Inference and perception. Green arrows represent
exteroceptive predictions and predictions errors underpin-
ning perceptual content, such as the visual experience of a
tomato. Orange arrows represent proprioceptive predictions
(and prediction errors) underlying action and the experience
of body ownership. Blue arrows represent interoceptive pre-
dictions (and prediction errors) underlying emotion, mood,
and autonomic regulation. Hierarchically higher levels will
deploy multimodal and even amodal predictive models span-
ning these domains, which are capable of generating mul-
timodal predictions of afferent signals.
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gical  changes  (James 1894)  and “higher-level”
cognitive appraisal of the context within which
these changes occur (Schachter & Singer 1962).
Instead  of  distinguishing  “physiological”  and
“cognitive”  levels  of  description,  interoceptive
inference  sees  emotional  content  as  resulting
from the multi-layered prediction of interocept-
ive input spanning many levels of abstraction.
Thus,  interoceptive  inference  integrates  cogni-
tion and emotion within the powerful setting of
PP.

The theory also connects with influential
frameworks that link interoception with decision
making,  notably  the  “somatic  marker  hypo-
thesis”  proposed  by  Antonio Damasio (1994).
According to the somatic marker hypothesis, in-
tuitive decisions are shaped by interoceptive re-
sponses  (somatic  markers)  to  potential  out-
comes. This idea, when placed in the context of
interoceptive inference, corresponds to the guid-
ance  of  behavioural  (allostatic)  responses  to-
wards the resolution of interoceptive prediction
error  (Gu &  Fitzgerald 2014;  Seth 2014a).  It
follows  that  intuitive  decisions  should  be  af-
fected  by  the  degree  to  which  an  individual
maintains accurate predictive models of his or
her  own interoceptive  states;  see  Dunn et  al.
2010,  Sokol-Hessner et  al. 2014 for  evidence
along these lines.

There are also important implications for
disorders  of  emotion,  selfhood,  and decision-
making. For example, anxiety may result from
the chronic persistence of interoceptive predic-
tion  errors  that  resist  top-down  suppression
(Paulus &  Stein 2006). Dissociative disorders
like  alexithymia  (the  inability  to  describe
one’s  own  emotions),  and  depersonalization
and derealisation (the loss of sense of reality
of  the  self  and  world)  may also  result  from
dysfunctional interoceptive inference, perhaps
manifest in abnormally low interoceptive pre-
cision  expectations  (Seth 2013;  Seth et  al.
2011). In terms of decision-making, it may be
productive to think of  addiction as resulting
from dysfunctional  active  inference,  whereby
strong  interoceptive  priors  are  confirmed
through action, overriding higher-order or hy-
per-priors relating to homeostasis and organis-
mic integrity. It has even been suggested that

autism  spectrum  disorders  may  originate  in
aberrant encoding of the salience or precision
of  interoceptive prediction errors (Quattrocki
&  Friston 2014).  The reasoning  here  is  that
aberrant  salience  during  development  could
disrupt  the  assimilation  of  interoceptive  and
exteroceptive cues within generative models of
the “self”, which would impair a child’s ability
to properly assign salience to socially relevant
signals. 

3.3 The predictive embodied self

The  maintenance  of  physiological  homeostasis
solely  through  direct  autonomic  regulation  is
obviously limited: behavioural (allostatic) inter-
actions with the world are necessary if the or-
ganism  is  to  avoid  surprising  physiological
states in the long run. The ability to deploy ad-
aptive behavioural responses mandates the ori-
ginal Helmholtzian view of perception-as-infer-
ence, which has been the primary setting for the
development of PP so far. A critical but argu-
ably overlooked middle ground, which mediates
between  physiological  state  variables  and  the
external environment, is the body. On one hand,
the body is the material vehicle through which
behaviour is expressed, permitting allostatic in-
teractions to take place. On the other, the body
is itself an essential part of the organismic sys-
tem, the homeostatic integrity of which must be
maintained. In addition, the experience of own-
ing and identifying with a particular body is a
key component of being a conscious self (Apps
&  Tsakiris 2014;  Blanke &  Metzinger 2009;
Craig 2009;  Limanowski &  Blankenburg 2013;
Seth 2013).

It  is  tempting  to  ask  whether  common
predictive mechanisms could underlie not only
classical  exteroceptive  perception  (like  vision)
and interoception (see above), but also their in-
tegration  in  supporting  conscious  and  uncon-
scious representations of the body and self (Seth
2013). The significance of this question is un-
derlined by realising that just as the brain has
no direct access to causal structures in the ex-
ternal environment, it also lacks direct access to
its own body. That is, given that the brain is in
the business of  inferring the causal sources of
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sensory signals,  a key challenge emerges when
distinguishing those signals that pertain to the
body  from those  that  originate  from the  ex-
ternal  environment.  A clue  to  how this  chal-
lenge is met is  that the physical body, unlike
the external environment, constantly generates
and receives internal input via its interoceptive
and  proprioceptive  systems  (Limanowski &
Blankenburg 2013;  Metzinger 2003). This sug-
gests that the experienced body (and self) de-
pends on the brain’s best guess of the causes of
those  sensory  signals  most  likely  to  be  “me”
(Apps &  Tsakiris 2014),  across  interoceptive,
proprioceptive, and exteroceptive domains (Fig-
ure 4).

There is now considerable evidence that
the  experience  of  body  ownership is  highly
plastic and depends on the multisensory integ-
ration  of  body-related  signals  (Apps &

Tsakiris 2014; Blanke & Metzinger 2009). One
classic  example  is  the  rubber  hand  illusion,
where the stroking of an artificial  hand syn-
chronously  with  a  participant’s  real  hand,
while visual attention is focused on the artifi-
cial hand, leads to the experience that the ar-
tificial  hand  is  somehow  part  of  the  body
(Botvinick &  Cohen 1998). According to cur-
rent  multisensory  integration  models,  this
change in the experience of body ownership is
due  to  correlation  between  vision  and  touch
overriding  conflicting  proprioceptive  inputs
(Makin et al. 2008). Through the lens of PP,
this implies that prediction errors induced by
multisensory  conflicts  will  over  time  update
self-related  priors  (Apps &  Tsakiris 2014),
with  different  signal  sources  (vision,  touch,
proprioception)  each  precision-weighted  ac-
cording to their expected reliability, and all in
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Figure 5: The interaction of interoceptive and exteroceptive signals in shaping the experience of body ownership. A. Set-up
for applying cardio-visual feedback in the rubber hand illusion. A Microsoft Kinect obtains a real-time 3D model of a sub-
ject’s left hand. This is re-projected into the subject’s visual field using a head-mounted display and augmented reality (AR)
software. B. The colour of the virtual hand is modulated by the subject’s heart-beat. C. A similar set-up for the full-body il-
lusion whereby a visual image of a subject’s body is surrounded by a halo pulsing either in time or out of time with the
heartbeat. Panels A and B are adapted from Suzuki et al. (2013); panel C is adapted from Aspell et al. (2013).
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the  setting  of  strong  prior  expectations  for
correlated input.5

While  the  potential  for  exteroceptive
multisensory integration to modulate the exper-
ience  of  body ownership  has  been  extensively
explored both for the ownership of body parts
and for the experience of ownership of the body
as a whole (for  reviews,  see  Apps &  Tsakiris
2014;  Blanke &  Metzinger 2009), only recently
has attention been paid to interactions between
interoceptive  and  exteroceptive  signals.  Initial
evidence in this line of investigation was indir-
ect,  for  example  showing  correlation  between
susceptibility  to the rubber hand illusion  and
individual differences in the ability to perceive
interoceptive signals (“interoceptive sensitivity”,
typically indexed by heartbeat detection tasks;
Tsakiris et  al. 2011).  Other  relevant  studies
have shown that body ownership illusions lead
to temperature reductions in the corresponding
body  parts,  perhaps  reflecting  altered  active
autonomic inference (Moseley et  al. 2008;  Sa-
lomon et al. 2013).

Emerging  evidence  now points  more  dir-
ectly towards the predictive multisensory integ-
ration of interoceptive and exteroceptive signals
in  shaping  the  experience  of  body ownership.
Two recent studies have taken advantage of so-
called “cardio-visual synchrony” where virtual-
reality representations of body parts (Suzuki et
al. 2013) or the whole body (Aspell et al. 2013)
are  modulated  by  simultaneously  recorded
heartbeat  signals,  with  the  modulation  either
in-time or out-of-time with the actual heartbeat
(Figure 5). These data suggest that statistical
correlations between interoceptive (e.g., cardiac)
and exteroceptive (e.g., visual) signals can lead
to the updating of predictive models of self-re-
lated  signals  through  (hierarchical)  minimiza-
tion  of  prediction  error,  just  as  happens  for
purely  exteroceptive  multisensory  conflicts  in
the classic rubber hand illusion.

While these studies underline the plausib-
ility of common predictive mechanisms underly-
ing  emotion,  selfhood,  and  perception,  many
open questions nevertheless remain. A key chal-
lenge is to detail the underlying neural opera-
5 Interestingly the expectation of perceptual correlations seems to be

sufficient for inducing the rubber hand illusion (Ferri et al. 2013). 

tions. Though a detailed analysis is beyond the
scope of the present paper, it is worth noting
that attention is increasingly focused on the in-
sular cortex (especially its anterior parts) as a
potential  source  of  interoceptive  predictions,
and also as a comparator registering interocept-
ive  prediction  errors.  The  anterior  insula  has
long been considered a major cortical locus for
the integration of interoceptive and exterocept-
ive signals (Craig 2003; Singer et al. 2009); it is
strongly  implicated  in  interoceptive  sensitivity
(Critchley et al. 2004); it is sensitive to intero-
ceptive prediction errors—at least in some con-
texts (Paulus & Stein 2006); and it has a high
density  of  so-called  “von  Economo”  neurons,6
which have been frequently though circumstan-
tially  associated  with  consciousness  and  self-
hood  (Critchley &  Seth 2012;  Evrard et  al.
2012). 

3.4 Active inference, self-modeling, and 
evolutionary robotics

What role  might  active inference play in pre-
dictive self-modelling? Autonomic changes dur-
ing illusions of body ownership (see above) are
consistent  with active  inference;  however  they
do  not  speak  directly  to  its  function.  In  the
classic  rubber  hand  illusion,  hand  or  finger
movements can be considered active inferential
tests of self-related hypotheses. If these move-
ments are not reflected in the “rubber hand”,
the  illusion  is  destroyed—presumably  because
predicted visual signals are not confirmed (Apps
&  Tsakiris 2014). However, if hand movements
are  mapped  to  a  virtual  “rubber  hand”—
through  clever  use  of  virtual  and  augmented
reality—the illusion is in fact strengthened, pre-
sumably because the multisensory correlation of
peri-hand visual and proprioceptive signals con-
stitutes a more stringent test of the perceptual
hypothesis of ownership of the virtual hand (Su-
zuki et al. 2013). This introduces the idea that
active inference is not simply about confirming
sensory  predictions  but  also  involves  seeking
“disruptive” actions that are most informative
with  respect  to  testing  current  predictions,
6 These are long-range projection neurons found selectively in hominid

primates and certain other species.
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and/or at disambiguating competing predictions
(Gregory 1980).  A  nice  example  of  how  this
happens in practice comes from evolutionary ro-
botics7—which is obviously a very different liter-
ature,  though  one  that  inherits  directly  from
the cybernetic tradition. 

In  a  seminal  2006  study,  Josh  Bongard
and colleagues described a four-legged “starfish”
robot that engaged in a process much like active
inference in order to model its own morphology
so as to be able to control its movement and at-
tain  simple  behavioural  goals  (Bongard et  al.
2006).  While  there  are  important  differences
between  evolutionary  robotics  and  (active)
Bayesian inference, there are also broad similar-
ities; importantly, both can be cast in terms of
model selection and optimization. 

The basic cycle of events is shown in Fig-
ure 6. The robot itself is shown in the centre
(A). The goal is to develop a controller capable
of generating forward movement. The challenge
is that the robot’s morphology is unknown to
the robot itself. The system starts with a range
of (generic prior) potential self-models (B), here
specified by various configurations of  three-di-
mensional physics engines. The robot performs
a series of initially random actions and evalu-
ates its candidate self-models on their ability to
predict the resulting proprioceptive afferent sig-
nals.  Even  though  all  initial  models  will  be
wrong,  some may be better  than others.  The
key step comes next. The robot evaluates new
candidate  actions  on the  extent  to  which  the
current  best  self-models  make different  predic-
tions as to their (proprioceptive) consequences.
These  disambiguating  actions  are  then  per-
formed, leading to a new ranking of self-models
based on their success at proprioceptive predic-
tion. This ranking, via the evolutionary robotics
methods of mutation and replication, gives rise
to a new population of  candidate self-models.
The upshot is that the system swiftly develops
accurate self-models that can be used to gener-
ate controllers enabling movement (D). An in-
teresting  feature  of  this  process  is  that  it  is
7 Evolutionary robotics involves the use of population-based

search  procedures  (genetic  algorithms)  to  automatically
specify control architectures (and/or morphologies) of mo-
bile  robots.  For  an  excellent  introduction  see  (Bongard
2013).

highly  resilient  to  unexpected  perturbations.
For instance, if a leg is removed then proprio-
ceptive prediction errors will immediately ensue.
As a result, the system will engage in another
round of self-model evolution (including the co-
specification of competing self-models and dis-
ambiguating actions) until a new, accurate, self-
model is regained. This revised self-model can
then be used to develop a new gait,  allowing
movement, even given the disrupted body (E,
F).8

This  study  emphasizes  that  the  opera-
tional criterion for a successful self-model is not
so much its fidelity to the physical robot, but
rather its ability to predict sensory inputs under
a repertoire of actions. This underlines that pre-
dictive models are recruited for the control of
behaviour (as cybernetics assumes) and not to
furnish  general-purpose  representations  of  the
world or the body.

The  study  also  provides  a  concrete  ex-
ample of how actions can be performed, not to
achieve some externally specified goal, but to
permit inference about the system’s own phys-
ical instantiation. Bayesian or not, this implies
active inference. Indeed, perhaps its most im-
portant contribution is that it highlights how
active  inference  can  prescribe  disruptive or
disambiguating actions  that  generate  sensory
prediction errors under competing hypotheses,
and not just actions that seek to confirm sens-
ory predictions. This recalls models of atten-
tion based on maximisation of  Bayesian sur-
prise (Itti & Baldi 2009), and is equivalent to
hypothesis  testing in science, where the best
experiments are those concocted on the basis
of  being most  likely to falsify a  given hypo-
thesis  (disruptive)  or  distinguish  between
competing  hypotheses  (disambiguating).  It
also  implies  that  agents  encode  predictions
about  the  likely  sensory  consequences  of  a
range of potential actions, allowing the selec-
tion of those actions likely to be the most dis-
ruptive or disambiguating. This concept of a
counterfactually-equipped  predictive  model
bring us nicely to our next topic: so-called en-
active cognitive science and its relation to PP.
8 Videos showing the evolution of both gait and self-model are avail-

able from http://creativemachines.cornell.edu/emergent_self_models
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4 Predictive processing and enactive 
cognitive science

4.1 Enactive theories, weak and strong

The idea that the brain relies on internal rep-
resentations or models of extra-cranial states of
affairs  has  been  treated  with  suspicion  ever
since the limitations of “good old fashioned arti-

ficial  intelligence”  became  apparent  (Brooks
1991). Many researchers of artificial intelligence
have indeed returned to cybernetics  as an al-
ternative  framework  in  which  closely  coupled
feedback loops,  leveraging  invariants  in  brain-
body-world  interactions,  obviate  the  need  for
detailed  internal  representations  of  external
properties (Pfeifer & Scheier 1999). The evolu-
tionary robotics methodology just described is
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often coupled with simple dynamical neural net-
works  in  order  to  realize  controllers  that  are
tightly embodied and embedded in just this way
(Beer 2003). Within cognitive science, such anti-
representationalism is  most vociferously defen-
ded by the movement variously known as “en-
active” (Noë 2004), “embodied” (Gallese & Sini-
gaglia 2011), or “extended” (Clark & Chalmers
1998)  cognitive  science.  Among  these  ap-
proaches, it is enactivism that is most explicitly
anti-representationalist. While enactive theorists
might  agree  that  adaptive  behaviour  requires
organisms and control structures that are sys-
tematically sensitive to statistical structures in
their  environment,  most  will  deny  that  this
sensitivity implies the existence and deployment
of  any  “inner  description”  or  model  of  these
probabilistic patterns (Chemero 2009;  Hutto &
Myin 2013).

This tradition has weak and strong expres-
sions. At the weak extreme is the truism that
perception, cognition, and behaviour—and their
underlying mechanisms—cannot be understood
without a rich appreciation of the roles of the
body, the environment, and the structured in-
teractions  that  they  support  (Clark 1997;
Varela et al. 1993). Weak enactivism is emin-
ently  compatible  with  PP,  as  seen  especially
with emerging versions of  PP that stress  em-
bodiment through self-modelling and interocep-
tion,  and  which  emphasize  the  importance  of
agent-environment  coupling  (embeddedness)
through active inference. At the other extreme
lie  claims that explanations based on internal
representations or models of any sort are funda-
mentally misguided, and that a new explicitly
non-representational vocabulary is needed in or-
der  to  make  sense  of  the  relations  between
brains, bodies, and the world (O’Regan et al.
2005). Strong enactivism is by definition incom-
patible with PP since it rejects the core concept
of the internal model. 

4.2 Sensorimotor contingency theory 

A landmark in the strongly enactive approach is
SMC (sensorimotor contingency) theory, which
says that perception depends on the “practical
mastery” of sensorimotor dependencies relevant

to behaviour (O’Regan &  Noë 2001). In brief,
SMC theory claims that experience and percep-
tion are not things that are “generated” by the
brain (or by anything else for that matter) but
are, rather, “skills” consisting of fluid patterns
of  on-going  interaction  with  the  environment
(O’Regan &  Noë 2001). For instance, on SMC
theory the conscious visual  experience of  red-
ness is given by  the exercise of practical mas-
tery of the laws governing how interactions with
red  things  unfold (these  laws  being  the
“SMC”s). The theory is not, however, limited to
vision: the experiential quality of the softness of
a sponge would be given by (practical mastery
of) the laws governing its squishiness upon be-
ing pressed.

Two aspects of  SMC theory deserve em-
phasis here. The first is that the concept of an
SMC rightly  underlines  the  close  coupling  of
perception and action and the critical import-
ance  of  ongoing  agent-environment interaction
in  structuring  perception,  action,  and  beha-
viour. This is inherited from Gibsonian notions
of perceptual affordance (Gibson 1979) and has
certainly  advanced  our  understanding  of  why
different kinds of perceptual experience (vision,
smell,  touch,  etc.)  have  different  qualitative
characters. 

The second is that mastery of an SMC re-
quires an essentially counterfactual knowledge of
relations between particular actions and the res-
ulting sensations. In vision, for instance, mas-
tery entails an implicit knowledge of the ways in
which moving our eyes and bodies would reveal
additional sensory information about perceptual
objects (O’Regan & Noë 2001). Here SMC the-
ory has made an important contribution to our
understanding  of  perceptual  presence.  Percep-
tual presence refers to the property whereby (in
normal circumstances) perceptual contents ap-
pear as subjectively real, that is, as existing. For
example, when viewing a tomato, we see it as
real  inasmuch as  we seem to  be  perceptually
aware of some of its parts (e.g., its back) that
are not currently causally impacting our sensory
surfaces. Looking at a picture of a tomato does
not give rise to the same subjective impression
of realness. But how can we be aware of parts of
the tomato that,  strictly speaking,  we do not
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see?  SMC theory  says  the  answer  lies  in  our
(implicit) mastery of SMCs, which relate poten-
tial actions to their likely sensory effects; and it
is  in  this  sense  that  we  can  be  perceptually
aware of parts of the tomato that we cannot ac-
tually see (Noë 2006). 

SMC theory  has  often  been  set  against
naïve  representationalist  theories  in  cognitive
science that propose such things as “pictures in
the head” or that (like good-old-fashioned-AI)
treat accurate representations of external prop-
erties as general-purpose goal states for cogni-
tion. This is all to the good. Yet by dispensing
with implementation-level concepts such as pre-
dictive inference, it struggles with the import-
ant question of what exactly is going on in our
heads during the exercise of mastery of a sen-
sorimotor contingency. 9 

4.3 Predictive perception of sensorimotor 
contingencies 

A  powerful  response  is  given  by  integrating
SMC theory with PP, in the guise of PPSMC
(Predictive Perception of SensoriMotor Contin-
gencies; Seth 2014b). An extensive development
of PPSMC is given elsewhere (see  Seth 2014b
plus commentaries and response). Here I sum-
marize the main points. First, recall that under
PP prediction errors can be minimized either by
updating perceptual predictions or by perform-
ing  actions,  where  actions  are  generated
through the resolution of proprioceptive predic-
tion  errors.  Also  recall  that  PP is  inherently
hierarchical, so that at some hierarchical level
predictive models  will  encode multimodal  and
even amodal expectations linking exteroceptive
(sensory) and proprioceptive (motor) sensations.
These models generate predictions about linked
sequences  of  sensory  and  proprioceptive  (and
possibly interoceptive) inputs corresponding to
specific actions,  with predictions becoming in-
creasingly modality-specific at lower hierarchical
levels.  These multi-level predictive models can

9 At a recent symposium of the AISB society that focused on SMC
theory, it was stated that “the main question is how to get the brain
into view from an enactive/sensorimotor perspective. […] Addressing
this question is urgently needed, for there seem to be no accepted al-
ternatives to representational interpretations of the inner processes”
(O’Regan & Dagenaar 2014).

therefore be understood as instantiating the im-
plicit  sub-personal  knowledge  of  sensorimotor
constructs underlying SMCs and their acquisi-
tion.  Put  simply,  hierarchical  active  inference
implies  the existence  of  predictive  models  en-
coding information very much like that required
by SMC theory.

The next step is to incorporate the notion
of  mastery of SMCs, which, as mentioned, im-
plies an essentially counterfactual kind of impli-
cit  knowledge.  The simple solution  is  to  aug-
ment  the  predictive  models  that  animate  PP
with  counterfactual  probability  densities.10 As
introduced  earlier  (section  4.1),  counterfactu-
ally-equipped predictive models encode not only
the likely causes of current sensory input, but
also the likely causes of fictive sensory inputs
conditioned  on  possible  but  not  executed  ac-
tions. That is, they encode how sensory inputs
(and their expected precisions) would change on
the basis of a repertoire of possible actions (ex-
pressed  as  proprioceptive  predictions),  even  if
those actions are not performed. The counter-
factual  encoding  of  expected  precision  is  im-
portant here, since it is on this basis that ac-
tions can be selected for their likelihood of min-
imizing  the  conditional  uncertainty  associated
with a perceptual prediction. There is a math-
ematical  basis  for  manipulating counterfactual
beliefs of this kind, as shown in a recent model
where counterfactual PP drives oculomotor con-
trol during visual search (Friston 2014;  Friston
et al. 2012).11 Here the main point is that coun-
terfactually-rich  predictive  models  supply  just
what is needed by SMC theory: an answer to
the  question  of  what  is  going  on  inside  our
heads during the exercise of mastery of SMCs. 

Counterfactual PP makes sense from sev-
eral  perspectives  (Seth 2014b).  As  mentioned
above, it provides a neurocognitive operational-
isation of the notion of mastery of SMCs that is
central to enactive cognitive science. In doing so
it dissolves apparent tensions between enactive
10 See Beaton (2013) for a distinct approach to incorporating counter-

factual  ideas  in SMC theory.  Beaton’s  approach remains  squarely
within the strongly enactivist tradition.

11 There are also some challenges lying in wait here. For instance, it
is  not  immediately  clear  how  important  assumptions  like  the
Laplace approximation can generalize to the multimodal probab-
ility distributions entailed by counterfactual PP (Otworowska et
al. 2014). 
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cognitive  science  and  approaches  grounded  in
the Bayesian brain, but only at the price of re-
jecting the strong enactivist’s insistence that in-
ternal models or representations—of any sort—
are  unacceptable.12 PPSMC  also  provides  a
solution to the challenge of accounting for per-
ceptual  presence  within  PP.  The  idea  here  is
that  perceptual  presence  corresponds  to  the
counterfactual  richness of  predictive  models.
That is, perceptual contents enjoy presence to
the  extent  that  the  corresponding  predictive
models encode a rich repertoire of counterfac-
tual relations linking potential actions to their
likely sensory consequences.13 In other words, we
experience normal perception as world-revealing
precisely because the predictive models underly-
ing perceptual content specify a rich repertoire
of counterfactually explicit probability densities
encoding the mastery of SMCs. 

A good test of PPSMC is whether it can ac-
count for cases where normal perceptual presence
is lacking. An important example is synaesthesia,
where it is widely reported that synaesthetic “con-
currents”  (e.g.,  the  inexistent  colours  sometimes
perceived  along  with  achromatic  grapheme  in-
ducers) are not experienced as being part of the
world  (i.e.,  synaesthetes  generally  retain  intact
reality testing with respect to their concurrent ex-
periences). PPSMC explains this by noticing that
predictive models related to synaesthetic concur-
rents are counterfactually poor. The hidden (envir-
onmental) causes giving rise to concurrent-related
sensory signals do not embed a rich and deep stat-
istical structure for the brain to learn. In particu-
lar, there is very little sense in which synaesthetic
concurrents  depend on active  sampling  of  their
hidden causes.  According to PPSMC, it  is  this
comparative  counterfactual  poverty that explains
why synaesthetic concurrents lack perceptual pres-
ence. SMC theory itself struggles to account for
this phenomenon—not least because it struggles to
account for synaesthesia in the first place (Gray
2003). 
12 There is a more dramatic conflict with “radical” versions of enactiv-

ism, in which mental processes, and in some cases even their material
substrates, are allowed to extend beyond the confines of the skull
(Hutto & Myin 2013).

13 Presence may also depend on the hierarchical  depth of predictive
models inasmuch as this reflects object-related invariances in percep-
tion. For further discussion see commentaries and response to (Seth
2014b).

There are some challenges to thinking that
perceptual presence uniquely depends on coun-
terfactual  richness.  One might  think that  the
more familiar one is with an object, the richer
the  repertoire  of  counterfactual  relations  that
will be encoded. If so, the more familiar one is
with an object, the more it should appear to be
real. But prima facie it is not clear that famili-
arity and perceptual presence go hand-in-hand
like  this.14 Also,  some  perceptual  experiences
(like  the  experience  of  a  blue  sky)  can  seem
highly perceptually present despite engaging an
apparently poor repertoire of counterfactual re-
lations  linking  sensory  signals  to  possible  ac-
tions.  An  initial  response  is  to  consider  that
presence  might  depend  not  on  counterfactual
richness  per se, but on a “normalized” richness
based on higher-order expectations of counter-
factual  richness  (which  would  be  low for  the
blue  sky,  for  instance).  These  considerations
also point to potentially important distinctions
between  perceived  objecthood and  perceived
presence,  a  proper  treatment  of  which  moves
beyond the scope of the present paper.

5 Active inference

5.1 Counterfactual PP and active 
inference

Active inference has appeared repeatedly as an
important concept throughout this paper. Yet it
is more difficult to grasp than the basics of PP,
which involve passive predictive inference. This
is partly because several senses of active infer-
ence can be distinguished, which have not previ-
ously been fully elaborated. 

In  general,  active  inference  can  be  har-
nessed to drive action, or to improve perceptual
predictions. In the former case, actions emerge
from the minimization of proprioceptive predic-
tion errors through engaging classical reflex arcs
(Friston et al. 2010). This implies the existence
of generative models that predict time-varying
flows of proprioceptive inputs (rather than just
end-points), and also the transient reduction of
expected precision of proprioceptive prediction

14 Thanks to my reviewers for raising this provocative point.
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errors,  corresponding  to  sensory  attenuation
(Brown et al. 2013).

In the latter case, actions are engaged in
order to generate new sensory samples, with the
aim  of  minimizing  uncertainty  in  perceptual
predictions. This can be achieved in several dif-
ferent ways, as is apparent by analogy with ex-
perimental design in scientific hypothesis test-
ing. Actions can be selected that (i) are expec-
ted  to  confirm current  perceptual  hypotheses
(Friston et al. 2012); (ii)  are expected to  dis-
confirm such hypotheses; or (iii) are expected to
disambiguate between  competing  hypotheses
(Bongard et al. 2006). A scientist may perform
different experiments when attempting to find
evidence  against  a  current  hypothesis  than
when trying to decide between different hypo-
theses.  In  just  the same way,  active inference
may  prescribe  different  sampling  actions  for
these different objectives.

These distinctions underline that active in-
ference implies counterfactual PP. In order for a
brain to select those actions most likely to con-
firm, disconfirm, or decide between current pre-
dictive model(s), it is necessary to encode ex-
pected sensory inputs and precisions related to
potential  (but  not  executed)  actions.  This  is
evident  in  the  example  of  oculomotor  control
described earlier (Friston et al. 2012). Here, sac-
cades are guided on the basis of the expected
precision of sensory prediction errors so as to
minimize the uncertainty in current perceptual
predictions.  Note that this study retained the
higher-order prior that only a single perceptual
prediction  exists  at  any  one  time,  precluding
active inference in its disambiguatory sense.

Several  related  ideas  arise  in  connection
with  these  new  readings  of  active  inference.
Seeking disconfirmatory or disruptive evidence
is closely related to maximizing Bayesian sur-
prise (Itti & Baldi 2009). This also reminds us
that  the  best  statistical  models  are  usually
those  that  successfully  account  for  the  most
variance  with  the  fewest  degrees  of  freedom
(model parameters), not just those that result
in low residual error per se. In addition, disam-
biguating  competing  hypotheses  moves  from
Bayesian  model  selection  and  optimization  to
model  comparison,  where  arbitration  among

competing  models  is  mediated  by  trade-offs
between accuracy and model complexity (Rosa
et al. 2012).

The information-seeking (or “infotropic”15)
role of active inference puts a different gloss on
the free energy principle, which had been inter-
preted simply as minimization of prediction er-
ror. Rather, now the idea is that systems best
ensure their long-run survival by inducing the
most predictive model of the causes of sensory
signals, and this requires disruptive and/or dis-
ambiguating active inference, in order to always
put  the  current-best  model  to  the  test.  This
view helps dissolve worries about the so-called
“dark room problem” (Friston et al. 2012), in
which prediction error is minimized by predict-
ing something simple (e.g., the absence of visual
input) and then trivially confirming this predic-
tion (e.g., by closing one’s eyes).16 Previous re-
sponses to this challenge have appealed to the
idea of higher-order priors that are incompatible
with trivial minimization of lower-level predic-
tion errors: closing one’s eyes (or staying put in
a dark room) is not expected to lead to homeo-
static integrity on average and over time (Fris-
ton et  al. 2012;  Hohwy 2013).  It  is  perhaps
more  elegant  to  consider  that  disruptive  and
disambiguatory active inferences imply explor-
atory  sampling  actions,  independent  of  any
higher-order priors about the dynamics of sens-
ory signals per se. Further work is needed to see
how cost  functions  reflecting  infotropic  active
inference can be explicitly incorporated into PP
and the free energy principle.

5.2 Active interoceptive inference and 
counterfactual PP

What can be said about counterfactual PP and
active inference when applied to  interoception?
Is there a sense in which predictive models un-
derlying emotion and mood encode counterfac-
tual  associations  linking  fictive  interoceptive
signals (and their likely causes) to autonomic or
allostatic controls? And if so, what phenomeno-
15 Chris Thornton came up with this term (personal communication).
16 The term “dark room problem” comes from the idea that a free-en-

ergy-minimizing (or surprise-avoiding) agent could minimize predic-
tion error just by finding an environment that lacks sensory stimula-
tion (a “dark room”) and staying there.
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logical  dimensions  of  affective  experience  de-
pend on these associations? While these remain
open questions, we can at least sketch the ter-
ritory. 

We have seen that active inference in ex-
teroception implies counterfactual processing, so
that actions can be chosen according to their
predicted effects in terms of (dis)confirming or
disambiguating  sensory  predictions.  The  same
argument applies to interoception. For active in-
teroceptive inference to effectively disambiguate
predictive models, or (dis)confirm interoceptive
predictions, predictive models must be equipped
with counterfactual associations relating to the
likely effects  of  autonomic or  (at  higher  hier-
archical  levels)  allostatic  controls.  At  least  in
this sense, interoceptive inference then also in-
volves counterfactual expectations. 

That said, there are likely to be substan-
tial differences in how counterfactual active in-
ference plays out in interoceptive settings. For
instance, it may not be adaptive (in the long
run)  for  organisms  to  continually  attempt  to
disconfirm current interoceptive predictions, as-
suming these are compatible with homeostatic
integrity. To put it colloquially, we do not want
to drive our essential variables continually close
to viability limits,  just to check whether they
are always capable of returning. This recalls our
earlier point (section 4.1) that predictive control
is  more  naturally  applicable  to  interoception
than  exteroception,  given  the  imperative  of
maintaining  the  homeostasis  of  essential  vari-
ables. In addition, the causal structure of coun-
terfactual associations encoded by interoceptive
predictive models is undoubtedly very different
than in cases like vision. These differences may
speak to the substantial phenomenological dif-
ferences in the kind of perceptual presence asso-
ciated  with  these  distinct  conscious  contents
(Seth et al. 2011). 

6 Conclusion

This  paper has surveyed predictive  processing
(PP) from the unusual viewpoint of cybernetic
origins  in  active  homeostatic  control  (Ashby
1952;  Conant &  Ashby 1970).  This  shifts  the
perspective  from  perceptual  inference  as  fur-

nishing representations of the external world for
the  consumption  of  general-purpose  cognitive
mechanisms,  towards  model-based  predictive
control as a primary survival imperative from
which perception, action, and cognition ensue.
This view is aligned with the free energy prin-
ciple (Friston 2010); however it attempts to ac-
count  for  specific  cognitive  and phenomenolo-
gical  properties,  rather than for adaptive sys-
tems  in  general.  Several  implications  follow
from these considerations. Emotion becomes a
process  of  active  interoceptive  inference  (Seth
2013)—a process  that  also  recruits  autonomic
regulation and influences intuitive decision-mak-
ing through behavioural  allostasis.  A common
predictive  principle  underlying  interoception
and exteroception also provides an integrative
view of the neurocognitive mechanisms underly-
ing embodied selfhood, in particular the experi-
ence of body ownership (Apps & Tsakiris 2014;
Limanowski & Blankenburg 2013;  Suzuki et al.
2013). In this view, the experience of embodied
selfhood is specified by the brain’s “best guess”
of those signals most likely to be “me” across
exteroceptive and interoceptive domains. From
the perspective of cybernetics the embodied self
is both that which needs to be homeostatically
maintained and also the medium through which
allostatic interactions are expressed. 

A second influential line deriving from cy-
bernetics sets PP within the broader context of
model-based  versus  enactivist  perspectives  on
cognitive science. On one hand, cybernetics has
been  cited  in  support  of  non-representational
cognitive science in virtue of  its  showing how
simple mechanisms can give rise to complex and
apparently goal-directed behaviour by capitaliz-
ing on agent-environment interactions, mediated
by the body (Pfeifer &  Scheier 1999). On the
other, the cybernetic legacy shows how PP can
put mechanistic flesh on the philosophical bones
of enactivism, but only by embracing a finessed
form of representationalism (Seth 2014b). A key
concept within enactive cognitive science is that
of  mastery  of  sensorimotor  contingencies
(SMCs). This concept is useful for understand-
ing the qualitative character of distinct percep-
tual modalities, yet as expressed within enactiv-
ism it lacks a firm implementation basis. “Pre-
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dictive Perception  of  SensoriMotor Contingen-
cies” (PPSMC) addresses this challenge by pro-
posing that SMCs are implemented by predict-
ive  models  of  sensorimotor  relations,  under-
pinned  by  the  continuity  between  perception
and action entailed by active inference. Mastery
of sensorimotor contingencies  depends on pre-
dictive  models  of  counterfactual  probability
densities that specify the likely causes of sens-
ory signals that  would occur  were specific ac-
tions taken. By relating PP to key concepts in
enactivism,  this  theory is  able  to account  for
phenomenological  features  well  treated by the
latter,  such  as  the  experience  of  perceptual
presence (and its absence in cases like synaes-
thesia).

Considering these issues leads to distinct
readings of active inference, which at its most
general implies the selective sampling of sensory
signals  to  minimize  uncertainty about percep-
tual predictions. At a finer grain, active infer-
ence can involve performing actions to confirm
current predictions,  to disconfirm current pre-
dictions, or to disambiguate competing predic-
tions. These different senses rest on the concept
of counterfactually-equipped predictive models;
and they generalize the free energy principle to
include  Bayesian-model  comparison  as  well  as
optimization and inference.

In summary, the ideas outlined in this pa-
per provide a distinctive integration of predict-
ive  processing,  cybernetics,  and  enactivism.
This  rich  blend  dissolves  apparent  tensions
between internalist and enactivist (model-based
and model-free)  views  on  the  neural  mechan-
isms underlying perception, cognition, and ac-
tion; it elaborates common predictive mechan-
isms underlying perception and control of  self
and world; it provides a new view of emotion as
active interoceptive inference, and it shows how
“counterfactual”  predictive  processing  can  ac-
count for the phenomenology of conscious pres-
ence  and its  absence  in  specific  situations.  It
also finesses the concept of active inference to
engage distinct forms of hypothesis testing that
prescribe different sampling actions (one bonus
is  that  the  “dark room problem” is  elegantly
solved).  At  the  same  time,  new and  difficult
challenges arise in validating these ideas experi-

mentally  and  in  distinguishing  them from al-
ternative explanations that do not rely on in-
ternally-realised inferential mechanisms.
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