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Versions of the “predictive brain” hypothesis rank among the most promising and
the most conceptually challenging visions ever to emerge from computational and
cognitive neuroscience. In this paper, I briefly introduce (section 1) the most rad-
ical and comprehensive of these visions—the account of “active inference”, or “ac-
tion-oriented predictive processing” (Clark 2013a), developed by Karl Friston and
colleagues. In section 2, I isolate and discuss four of the framework’s most provoc-
ative claims: (i) that the core flow of information is top-down, not bottom-up, with
the forward flow of sensory information replaced by the forward flow of prediction
error; (ii) that motor control is just more top-down sensory prediction; (iii) that ef-
ference copies, and distinct “controllers”, can be replaced by top-down predic-
tions; and (iv) that cost functions can fruitfully be replaced by predictions. Work-
ing together, these four claims offer a tantalizing glimpse of a new, integrated
framework for understanding perception, action, embodiment, and the nature of
human experience. I end (section 3) by sketching what may be the most important
aspect of the emerging view: its ability to embed the use of fast and frugal solu-
tions (as highlighted by much work in robotics and embodied cognition) within an
over-arching  scheme  that  includes  more  structured,  knowledge-intensive
strategies, combining these fluently and continuously as task and context dictate.
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1 Mind turned upside down?

PP (Predictive processing; for this terminology,
see  Clark 2013a) turns a traditional picture of
perception on its head. According to that once-
standard picture (Marr 1982),  perceptual pro-
cessing is dominated by the forward flow of in-
formation transduced from various sensory re-
ceptors.  As  information  flows  forward,  a  pro-
gressively richer picture of the real-world scene
is  constructed.  The  process  of  construction
would  involve  the  use  of  stored  knowledge  of
various kinds, and the forward flow of informa-
tion was subject to modulation and nuancing by
top-down (mostly attentional)  effects. But the
basic picture remained one in which perception
was fundamentally a process of “bottom-up fea-
ture detection”. In Marr’s theory of vision, de-
tected intensities  (arising from surface  discon-

tinuities and other factors) gave way to detected
features such as blobs, edges, bars, “zero-cross-
ings”, and lines, which in turn gave way to de-
tected  surface  orientations  leading  ultimately
(though this step was always going to be prob-
lematic)  to  a  three-dimensional  model  of  the
visual  scene.  Early perception is  here seen as
building towards a complex world model by a
feedforward  process  of  evidence  accumulation.
Traditional  perceptual  neuroscience  followed
suit,  with  visual  cortex (the  most-studied  ex-
ample)  being  “traditionally  viewed  as  a  hier-
archy of  neural  feature detectors,  with neural
population responses being driven by bottom-up
stimulus features” (Egner et al. 2010, p. 16601).
This was a view of the perceiving brain as pass-
ive and stimulus-driven, taking energetic inputs
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from the senses and turning them into a coher-
ent  percept  by  a  kind  of  step-wise  build-up
moving from the simplest features to the more
complex: from simple intensities up to lines and
edges and on to complex meaningful shapes, ac-
cumulating structure and complexity along the
way in a kind of Lego-block fashion. 

Such views may be contrasted with the in-
creasingly active views that have been pursued
over the past several decades of neuroscientific
and computational research. These views (Bal-
lard 1991; Churchland et al. 1994; Ballard et al.
1997) stress the active search for task-relevant
information  just-in-time  for  use.  In  addition,
huge  industries  of  work  on  intrinsic  neural
activity,  the  “resting  state”  and  the  “default
mode”  (for  a  review,  see  Raichle &  Snyder
2007) have drawn our attention to the ceaseless
buzz of neural activity that takes place even in
the absence of ongoing task-specific stimulation,
suggesting that much of the brain’s work and
activity is in some way ongoing and endogen-
ously generated. 

Predictive processing plausibly represents
the last  and most radical step in this  retreat
from the passive, input-dominated view of the
flow  of  neural  processing.  According  to  this
emerging class  of  models,  naturally  intelligent
systems  (humans  and  other  animals)  do  not
passively  await  sensory  stimulation.  Instead,
they are constantly active, trying to predict the
streams of sensory stimulation before they ar-
rive.  Before  an  “input”  arrives  on  the  scene,
these  pro-active  cognitive  systems are  already
busy predicting its most probable shape and im-
plications. Systems like this are already (and al-
most  constantly)  poised  to  act,  and  all  they
need to process are any sensed deviations from
the predicted state. It is these calculated devi-
ations from predicted states (known as  predic-
tion errors) that thus bear much of the informa-
tion-processing burden, informing us of what is
salient and newsworthy within the dense sens-
ory  barrage.  The  extensive  use  of  top-down
probabilistic prediction here provides an effect-
ive means of avoiding the kinds of “representa-
tional  bottleneck”  feared  by  early  opponents
(e.g.,  Brooks 1991)  of  representation-heavy—
but  feed-forward  dominated—forms  of  pro-

cessing. Instead, the downward flow of predic-
tion  now  does  most  of  the  computational
“heavy-lifting”,  allowing  moment-by-moment
processing to focus only on the newsworthy de-
partures signified by salient (that is, high-preci-
sion—see section 3) prediction errors. Such eco-
nomy and preparedness is  biologically attract-
ive,  and neatly sidesteps the many processing
bottlenecks associated with more passive models
of the flow of information.

Action itself  (more on this shortly) then
needs to be reconceived. Action is not so much
a response to an input as a neat and efficient
way of selecting the next “input”, and thereby
driving a rolling cycle. These hyperactive sys-
tems  are  constantly  predicting  their  own  up-
coming  states,  and  actively  moving  so  as  to
bring some of them into being. We thus act so
as to bring forth the evolving streams of sensory
information that keep us viable (keeping us fed,
warm, and watered) and that serve our increas-
ingly  recondite  ends.  PP  thus  implements  a
comprehensive reversal of the traditional (bot-
tom-up,  forward-flowing)  schema.  The  largest
contributor to ongoing neural response, if PP is
correct,  is  the  ceaseless  anticipatory  buzz  of
downwards-flowing neural prediction that drives
both perception and action.  Incoming sensory
information is just one further factor perturbing
those restless pro-active seas. Within those seas,
percepts and actions emerge via a recurrent cas-
cade of sub-personal predictions forged (see be-
low)  from  unconscious  expectations  spanning
multiple spatial and temporal scales. 

Conceptually,  this  implies  a  striking  re-
versal,  in  that  the  driving  sensory  signal  is
really just providing corrective feedback on the
emerging top-down predictions.1 As ever-active
prediction engines, these kinds of minds are not,
fundamentally, in the business of solving puzzles
given to them as inputs. Rather, they are in the
business  of  keeping  us  one  step  ahead of  the
game,  poised to act and actively eliciting the
sensory flows that keep us viable and fulfilled. If
this is on track, then just about every aspect of
the passive forward-flowing model is false. We
are  not  passive  cognitive  couch  potatoes  so
1 For this observation, see Friston (2005), p. 825, and the discussion in

Hohwy (2013).
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much as proactive predictavores, forever trying
to stay one step ahead of the incoming waves of
sensory stimulation. 

2 Radical predictive processing

Such models involve a number of quite radical
claims. In the present treatment, I propose fo-
cusing upon just four:

 
1. The core flow of information is top-down, not
bottom-up, and the forward flow of sensory in-
formation  is  replaced  by  the  forward  flow  of
prediction error.
2. Motor control is just more top-down sensory
prediction.
3.  Efference  copies,  and  distinct  “controllers”
(inverse models) are replaced by top-down pre-
dictions.
4. Cost functions are absorbed into predictions.

 
One thing I shan’t try to do here is  re-

hearse  the  empirical  evidence  for  the  frame-
work. That evidence (which is substantial but
importantly  incomplete)  is  rehearsed in  Clark
(2013a) and  Hohwy (2013,  this collection). For
a recent attempt to specify a neural implement-
ation, see  Bastos et al. (2012). I now look at
each of these points in turn:

2.1 The core flow of information is top-
down, not bottom-up, and the forward 
flow of sensory information is 
replaced by the forward flow of 
prediction error

This is the heart and soul of the radical vision.
Incoming sensory information, if PP is correct,
is  constantly met with a cascade of  top-down
prediction, whose job is to predict the incoming
signal  across  multiple  temporal  and  spatial
scales. 

To see how this works in practice, consider
a  seminal  proof-of-concept  by  Rao &  Ballard
(1999). In this work, prediction-based learning
targets  image  patches  drawn  from  natural
scenes using a multi-layer artificial neural net-
work.  The network had no pre-set  task apart
from that of using the downwards connections

to match input samples with successful predic-
tions. Instead, visual signals were processed via
a hierarchical system in which each level tried
(in the way just sketched) to predict activity at
the  level  below  it  using  recurrent  (feedback)
connections.  If  the  feedback  successfully  pre-
dicted the lower-level activity, no further action
was required. Failures to predict enabled tuning
and revision of the model (initially, just a ran-
dom set of connection weights) generating the
predictions, thus slowly delivering knowledge of
the regularities  governing the domain.  In this
architecture, forward connections between levels
carried only the “residual errors” (Rao &  Bal-
lard 1999, p. 79) between top-down predictions
and actual lower level activity, while backward
or recurrent connections carried the predictions
themselves. 

After  training,  the  network  developed  a
nested structure of units with simple-cell-like re-
ceptive fields and captured a variety of import-
ant,  empirically-observed effects.  One such ef-
fect was “end-stopping”. This is a “non-classical
receptive  field”  effect  in  which  a  neuron  re-
sponds strongly to a short line falling within its
classical receptive field but (surprisingly) shows
diminishing  response  as  the  line  gets  longer.
Such effects (and with them, a whole panoply of
“context effects”) emerge naturally from the use
of  hierarchical  predictive  processing.  The  re-
sponse tails off as the line gets longer, because
longer lines and edges were the statistical norm
in the natural scenes to which the network was
exposed in training. After training, longer lines
are thus what is first predicted (and fed back,
as a hypothesis) by the level-two network. The
strong  firing  of  some  level-one  “edge  cells”,
when they are driven by shorter lines, thus re-
flects not successful feature detection by those
cells  but  rather  error  or  mismatch,  since  the
short segment was not initially predicted by the
higher-level network. This example neatly illus-
trates  the  dangers  of  thinking  in  terms  of  a
simple cumulative flow of feature-detection, and
also  shows  the  advantages  of  re-thinking  the
flow of processing as a mixture of top-down pre-
diction and bottom-up error correction.2 In ad-
2 This does not mean that there are no cells in v1 or elsewhere whose

responses match the classical profile. PP claims that each neural area
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dition  it  highlights  the  way  these  learning
routines latch on to the world in a manner spe-
cified by the  training  data.  End-stopped cells
are simply a response to the structure of  the
natural scenes used in training, and reflect the
typical  length of  the lines  and edges in these
natural scenes. In a very different world (such
as the underwater world of some sea-creatures)
such cells would learn very different responses.

These  were early  and relatively  low-level
results, but the predictive processing model it-
self has proven rich and (as we shall see) widely
applicable.  It  assumes  only  that  the  environ-
ment generates sensory signals by means of nes-
ted interacting causes and that the task of the
perceptual system is to invert this structure by
learning  and  applying  a  structured  internal
model—so as to predict the unfolding sensory
stream. Routines of this kind have recently been
successfully applied in many domains, including
speech perception, reading, and recognizing the
actions of oneself and of other agents (see Poep-
pel & Monahan 2011; Price & Devlin 2011; Fris-
ton et al. 2011). This is not surprising, since the
underlying  rationale  is  quite  general.  If  you
want to predict the way some set of sensory sig-
nals will change and evolve over time, a good
thing to do is to learn how those sensory signals
are determined by interacting external causes.
And a good way to learn about those interact-
ing causes is to try to predict how the sensory
signal will change and evolve over time. 

Now try  to  imagine  this  this  on  a  very
grand scale.  To predict the visually presented
scene,  the  system  must  learn  about  edges,
blobs, line segments,  shapes,  forms, and (ulti-
mately) objects. To predict text, it must learn
about  interacting  “hidden”  causes  in  the  lin-
guistic domain: causes such as sentences, words,
and  letters.  To  predict  all  of  our  rich  multi-
modal plays of sensory data, across many scales
of space and time, it must learn about interact-
ing hidden causes such as tables,  chairs,  cats,
faces, people, hurricanes, football games, goals,

contains two kinds of cell, or at least supports two functionally dis-
tinct response profiles, such that one functionality encodes error and
the other current best-guess content. This means that there can in-
deed be  (as  single  cell  recordings  amply demonstrate) recognition
cells in each area, along with the classical response profiles. For more
on this important topic, see Clark (2013a).

meanings, and intentions. The structured world
of  human experience,  if  this  is  correct,  comes
into  view  only  when  all  manner  of  top-down
predictions meet (and “explain away”) the in-
coming  waves  of  sensory  information.  What
propagates  forwards  (through the brain,  away
from the sensory peripheries) is then only the
mismatches, at every level, with predicted activ-
ity. 

This  makes  functional  sense.  Given  that
the  brain  is  ever-active,  busily  predicting  its
own  states  at  many  levels,  all  that  matters
(that is, all that is newsworthy, and thus ought
to  drive  further  processing)  are  the  incoming
surprises:  unexpected  deviations  from what  is
predicted. Such deviations result in prediction
errors  reflecting  residual  differences,  at  every
level and stage of processing, between the ac-
tual current signal and the predicted one. These
error signals  are used to refine the prediction
until the sensory signal is best accommodated. 

Prediction error  thus “carries  the news”,
and is pretty much the hero (or anti-hero) of
this whole family of models. So much so, that it
is sometimes said that:

In predictive coding schemes, sensory data
are replaced by prediction error,  because
that is the only sensory information that
has yet to be explained. (Feldman & Fris-
ton 2010, p. 2)

We can now savor the radicalism. Where tradi-
tional, feed-forward-based views see a progress-
ive (though top-down modulated) flow of com-
plex feature-detection, the new view depicts a
progressive, complex flow of feature prediction.
The top-down flow is not mere attentional mod-
ulation. It is the core flow of structured content
itself.  The forward-flowing signal,  by contrast,
has now morphed into a stream of residual er-
ror. I want to suggest, however, that we treat
this apparently radical inversion with some cau-
tion. There are two reasons for this—one con-
ceptual, and one empirical.

The first (conceptual) reason for caution is
that the “error signal” in a trained-up predict-
ive coding scheme is highly informative. Predic-
tion  error  signals  carry  detailed  information
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about the mismatched content itself. Prediction
errors  are  thus  as  structured  and nuanced in
their  implications  as  the  model-based  predic-
tions relative to which they are computed. This
means that, in a very real sense, the prediction
error signal is  not a mere proxy for incoming
sensory information – it is sensory information.
Thus, suppose you and I play a game in which I
(the “higher, predicting level”) try to describe
to you (the “lower level”) the scene in front of
your eyes. I can’t see the scene directly, but you
can. I do, however, believe that you are in some
specific room (the living room in my house, say)
that  I  have  seen  in  the  past.  Recalling  that
room as best I can, I say to you “there’s a vase
of yellow flowers on a table in front of you”. The
game then continues like this. If you are silent, I
take that as  your agreeing to my description.
But if I get anything that matters wrong, you
must tell me what I got wrong. You might say
“the flowers are yellow”. You thus provide an er-
ror  signal  that  invites  me  to  try  again  in  a
rather  specific  fashion—that  is,  to  try  again
with respect to the colour of the flowers in the
vase. The next most probable colour, I conjec-
ture,  is  red.  I  now describe  the  scene  in  the
same  way  but  with  red  flowers.  Silence.  We
have settled into a mutually agreeable descrip-
tion.3

The point to note is that your “error sig-
nal” carried some quite specific information. In
the pragmatic context of your silence regarding
all other matters, the content might be glossed
as “there is indeed a vase of flowers on the table
in front of me but they are not yellow”. This is
a pretty rich message. Indeed, it does not (con-
tent-wise) seem different in kind to the down-

3 To complete the image using this parlour game, we’d need to add a little
more structure to reflect the hierarchical nature of the message-passing
scheme.  We  might  thus  imagine  many  even-higher-level  “prediction
agents” working together to predict which room (house, world, etc.) the
layers below are currently responding to. Should sufficient prediction er-
ror signals accrue, this ensemble might abandon the hypothesis that sig-
nals are coming in from the living room, suggesting instead that they are
from the boudoir, or the attic. In this grander version (which recalls the
“mixtures of experts” model in machine learning—see Jordan & Jacobs
1994)—there are teams (and teams of teams) of specialist prediction
agents, all trying (guided top-down by the other prediction agents, and
bottom-up by prediction errors from the level below) to decide which
specialists should handle the current sensory barrage. Each higher-level
“prediction agent”, in this multi-level version, treats activity at the level
below as sensory information, to be explained by the discovery of apt
top-down predictions.

ward-flowing predictions themselves. Prediction
error signals are thus richly informative, and as
such (I would argue) not radically different to
sensory information itself. This is unsurprising,
since mathematically (as Karl Friston has poin-
ted out4) sensory information and prediction er-
ror  are  informationally  identical,  except  that
the latter are centred on the predictions. To see
this, reflect on the fact that prediction error is
just the original information minus the predic-
tion. It follows that the original information is
given by the prediction error plus the predic-
tion. Prediction error is simply error relative to
some specific prediction and as such it flags the
sensory information that is as yet unexplained.
The forward flow of prediction error thus consti-
tutes a forward flow of sensory information rel-
ative to specific predictions. 

There is more to the story at this point,
since the (complex, non-linear) ways in which
downward-flowing  predictions  interact  are  im-
portantly different to the (simple, linear) effects
of upward-flowing error signals. Non-linearities
characterize the multi-level construction of the
predictions, which do the “heavy lifting”, while
the prediction error signals are free to behave
additively (since all the complex webs of linkage
are already in place).  But the bottom line  is
that prediction error does not replace sensory
information in any mysterious or conceptually
challenging  fashion,  since  prediction  error  is
nothing  other  than  that  sensory  information
that has yet to be explained.

The second (empirical) reason for caution
is that it is, in any case, only one specific imple-
mentation of the predictive brain story depicts
the forward-flow as consisting solely of predic-
tion error. An alternative implementation (due
to Spratling 2008 and 2010—and see discussion
in  Spratling 2013)  implements  the  same  key
principles  using  a  different  flow  of  prediction
and error, and described by a variant mathem-
atical  framework.  This  illustrates  the  urgent
need  to  explore  multiple  variant  architectures
for prediction error minimization. In fact,  the
PP schema occupies just one point in a large
and complex space of  probabilistic generative-

4 Personal communication.
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model-based  approaches,  and  there  are  many
possible architectures and possible ways of com-
bining  top-down  predictions  and  bottom-up
sensory  information  in  this  general  vicinity.
These include foundational work by Hinton and
colleagues  on  deep  belief  networks  (Hinton &
Salakhutdinov 2006;  Hinton et al. 2006), work
that shares a core emphasis on the use of pre-
diction and probabilistic  multi-level generative
models, as well as recent work combining con-
nectionist  principles with Bayesian angles (see
McClelland 2013 and Zorzi et al. 2013). Mean-
while, roboticists such as  Tani (2007),  Saegusa
et al. (2008), Park et al. (2012), Pezzulo (2008),
and  Mohan et al. (2010) explore the use of a
variety of prediction-based learning routines as
a means of grounding higher cognitive functions
in  the  solid  bedrock  of  sensorimotor  engage-
ments with the world. Only by considering the
full space of possible prediction-and-generative-
model-based architectures and strategies can we
start  to  ask  truly  pointed  experimental  ques-
tions about the brain and about biological or-
ganisms; questions that might one day favor one
of these models (or,  more likely,  one coherent
sub-set of models5) over the rest, or else may re-
veal deep faults and failings among their sub-
stantial common foundations. 

2.2 Motor control is just more top-down 
sensory prediction

I shall, however, continue to concentrate upon
the specific explanatory schema implied by PP,
as  this  represents  (it  seems  to  me)  the  most
comprehensive  and  neuroscientifically  well-
grounded vision of the predictive mind currently
available. What makes PP especially interesting
—and conceptually challenging—is the seamless
integration  of  perception  and  action  achieved
under the rubric of “active inference”.

To  understand  this,  consider  the  motor
system. The motor system (like the visual cor-
tex) displays a complex hierarchical structure.6

5 One such subset is, of course, the set of hierarchical dynamic models
(see Friston 2008).

6 The appeal to hierarchical structure in PP, it should be noted, is
substantially different to that familiar from treatments  such as
Felleman & Van Essen (1991). Although I cannot argue for this
here (for more on this see  Clark 2013b;  in press)  the PP hier-

Such a structure allows complex behaviors to be
specified, at higher levels, in compact ways, the
implications of which can be progressively un-
packed at the lower levels. The traditional way
of  conceptualizing  the  difference,  however,  is
that in the case of motor control we imagine a
downwards flow of information, whereas in the
case of the visual cortex we imagine an upwards
flow. Descending pathways in the motor cortex,
this traditional picture suggests, should corres-
pond functionally to ascending pathways in the
visual  cortex.  This  is  not,  however,  the  case.
Within the motor cortex the downwards con-
nections (descending projections) are “anatom-
ically and physiologically more like backwards
connections in the visual cortex than the corres-
ponding  forward  connections”  (Adams et  al.
2013, p. 1).

This is suggestive. Where we might have
imagined the functional anatomy of a hierarch-
ical motor system to be some kind of inverted
image of that of the perceptual system, instead
the two seem fundamentally alike.7 The explan-
ation, PP suggests, is that the downwards con-
nections, in both cases, take care of essentially
the same kind of business—namely the business
of  predicting  sensory  stimulation.  Predictive
processing models  subvert,  we saw, the tradi-
tional picture with respect to perception. In PP,
compact higher-level  encodings are part of  an
apparatus that tries to predict the play of en-
ergy across the sensory surfaces. The same story
applies, recent extensions (see below) of PP sug-
gest, to the motor case. The difference is that
motor control is, in a certain sense, subjunctive.
It  involves  predicting  the  non-actual  sensory
trajectories that  would ensue  were we perform-
ing some desired action. Reducing prediction er-

archy is fluid in that the information-flows it supports are recon-
figurable moment-by-moment (by, for example, changing be and
theta band oscillations —see Bastos et al. 2015). In addition, PP
dispenses entirely with the traditional idea (nicely reviewed, and
roundly  rejected,  in  Churchland et  al. 1994) that  earlier  levels
must  complete  their  tasks  before  passing  information  “up”  the
hierarchy. The upshot is that the PP models are much closer to
dynamical  systems  accounts  than  to  traditional,  feed  forward,
hierarchical ones.

7 For the full story, see Adams et al. (2013). In short: “[t]he descending
projections from motor cortex share many features with top-down or
backward  connections  in  visual  cortex;  for  example,  corticospinal
projections originate in infragranular layers, are highly divergent and
(along with descending cortico-cortical projections) target cells  ex-
pressing NMDA receptors” (Adams et al. 2013, p. 1). 
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rors calculated against these non-actual states
then serves (in ways we are about to explore) to
make them actual. We predict the sensory con-
sequences of our own action and this brings the
actions about. 

The upshot is that the downwards connec-
tions, in both the motor and the sensory cortex,
carry  complex  predictions,  and  the  upwards
connections  carry  prediction  errors.  This  ex-
plains the otherwise “paradoxical” (Shipp et al.
2013, p. 1) fact that the functional circuitry of
the motor cortex does not seem to be inverted
with respect to that of the sensory cortex. In-
stead,  the very distinction between the motor
and the sensory cortex is now eroded—both are
in the business of top-down prediction, though
the kind of thing they predict is (of course) dif-
ferent.  The  motor  cortex  here  emerges,  ulti-
mately, as a multimodal sensorimotor area issu-
ing predictions in both proprioceptive and other
modalities. 

In this way, PP models have been exten-
ded (under the umbrella of “active inference”—
see Friston 2009; Friston et al. 2011) to include
the control of action. This is accomplished by
predicting the flow of sensation (especially that
of proprioception) that would occur were some
target  action  to  be  performed.  The  resulting
cascade of prediction error is then quashed by
moving the bodily plant so as to bring the ac-
tion about. Action thus results from our own
predictions concerning the flow of sensation—a
version  of  the  “ideomotor”  theory  of  James
(1890) and Lotze (1852), according to which the
very idea of moving, when unimpeded by other
factors, is what brings the moving about. The
resulting schema is one in which:

The perceptual and motor systems should
not be regarded as separate but instead as
a single active inference machine that tries
to predict its sensory input in all domains:
visual,  auditory,  somatosensory,  intero-
ceptive and, in the case of the motor sys-
tem, proprioceptive. (Adams et al. 2013, p.
4)

In the case of motor behaviors, the key driving
predictions, Friston and colleagues suggest, are

predictions of the proprioceptive patterns8 that
would ensue were the action to be performed
(see  Friston et  al. 2010).  To  make  an  action
come about, the motor plant responds so as to
cancel  out  proprioceptive prediction errors.  In
this way, predictions of the unfolding proprio-
ceptive patterns that would be associated with
the performance of some action serve to bring
that  action  about.  Proprioceptive  predictions
directly elicit motor actions (so traditional mo-
tor  commands  are  simply  replaced  by  those
proprioceptive predictions).

This  erases  any  fundamental  computa-
tional line between perception and the control
of action. There remains, to be sure, an obvious
(and important)  difference  in  direction  of  fit.
Perception here matches  neural  hypotheses  to
sensory  inputs,  and  involves  “predicting  the
present”; while action brings unfolding proprio-
ceptive inputs into line with neural predictions.
The difference,  as  Elizabeth Anscombe (1957)
famously  remarked,9 is  akin  to  that  between
consulting a shopping list to select which items
to purchase (thus letting the list determine the
contents  of  the  shopping  basket)  and  listing
some actually purchased items (thus letting the
contents of the shopping basket determine the
list). But despite this difference in direction of
fit, the underlying form of the neural computa-
tions is now revealed to be the same. Indeed,
the main difference between the motor and the
visual cortex, on this account, lies more in what
kind of thing (for example, the proprioceptive
consequences of a trajectory of motion) is pre-
dicted, rather than in how it is predicted. The
upshot is that:

The primary motor cortex is no more or
less  a  motor  cortical  area  than  striate
(visual)  cortex.  The  only  difference

8 Proprioception is the “inner” sense that informs us about the relative
locations of our bodily parts and the forces and efforts that are being
applied. It is to be distinguished from exteroceptive (i.e., standard
perceptual) channels such as vision and audition, and from intero-
ceptive channels informing us of hunger, thirst, and states of the vis-
cera.  Predictions  concerning  the  latter  may  (see  Seth 2013 and
Pezzulo 2014) play a large role in the construction of feelings and
emotions.

9 Anscombe’s target was the distinction between desire and belief, but
her  observations  about  direction  of  fit  generalize  (as  Shea 2013
notes) to the case of actions, here conceived as the motoric outcomes
of certain forms of desire.
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between the motor cortex and visual cor-
tex is that one predicts retinotopic input
while the other predicts proprioceptive in-
put from the motor plant. (Friston et al.
2011, p. 138)

Perception and action here follow the same ba-
sic logic and are implemented using the same
computational  strategy.  In each case,  the sys-
temic imperative remains the same: the reduc-
tion of ongoing prediction error. This view has
two rather  radical  consequences,  to  which  we
shall now turn.

2.3 Efference copies and distinct 
“controllers” are replaced by top-
down predictions

A long tradition in the study of motor control
invokes a “forward model” of the likely sensory
consequences of our own motor commands. In
this  work,  a  copy  of  the  motor  command
(known  as  the  “efference  copy”;  Von  Holst
1954)  is  processed  using  the  forward  model.
This model captures (or “emulates”—see Grush
2004)  the  relevant  biodynamics  of  the  motor
plant, enabling (for example) a rapid prediction
of the likely feedback from the sensory peripher-
ies.  It  does  this  by encoding  the  relationship
between motor commands and predicted sens-
ory outcomes. The motor command is thus cap-
tured using the efference copy which, fed to the
forward model, yields a prediction of the sens-
ory outcome (this is sometimes called the “co-
rollary  discharge”).  Comparisons  between  the
actual and the predicted sensory input are thus
enabled.

But motor control, in the leading versions
of this kind of account, requires in addition the
development  and  use  of  a  so-called  “inverse
model”  (see  e.g.,  Kawato 1999;  Franklin &
Wolpert 2011). Where the forward model maps
current motor commands in order to predicted
sensory effects, the inverse model (also known
as  a controller)  “performs the opposite  trans-
formation […] determining the motor command
required  to  achieve  some  desired  outcome”
(Wolpert et al. 2003, p. 595). Learning and de-
ploying an inverse model appropriate to some

task is, however, generally much more demand-
ing than learning the  forward model,  and re-
quires  solving  a  complex  mapping  problem
(linking the desired end-state to a nested cas-
cade  of  non-linearly  interacting  motor  com-
mands) while effecting transformations between
varying  co-ordinate  schemes  (e.g.,  visual  to
muscular or proprioceptive—see e.g., Wolpert et
al. 2003, pp. 594–596). 

PP (the full “action-inclusive” version just
described)  shares  many key insights  with this
work. They have common a core emphasis on
the prediction-based learning of a forward (gen-
erative) model, which is able to anticipate the
sensory consequences of action. But active infer-
ence,  as  defended  by  Friston  and  others—see
e.g.,  Friston (2011);  Friston et al. (2012)—dis-
penses with the inverse model or controller, and
along with it the need for efference copy of the
motor command. To see how this works, con-
sider that action is here reconceived as a direct
consequence  of  predictions  (spanning  multiple
temporal and spatial scales) about trajectories
of motion. Of special importance here are pre-
dictions about proprioceptive consequences that
implicitly minimize various energetic costs. Sub-
ject to the full cascade of hierarchical top-down
processing, a simple motor command now un-
folds into a complex set of predictions concern-
ing  both  proprioceptive  and  exteroceptive  ef-
fects. The proprioceptive predictions then drive
behavior, causing us to sample the world in the
ways that the current winning hypothesis dic-
tates.10 

Such  predictions  can  be  couched,  at  the
higher levels, in terms of desired states or traject-
ories  specified  using  extrinsic  (world-centered,
limb-centered) co-ordinates. This is possible be-
cause  the  required  translation  into  intrinsic
(muscle-based) co-ordinates  is  then devolved to
what are essentially classical reflex arcs set up to
quash priorioceptive prediction errors. Thus:

if  motor  neurons  are  wired  to  suppress
proprioceptive  prediction  errors  in  the
dorsal horn of the spinal cord, they effect-

10 For a simulation-based demonstration of the overall shape of the PP account, see
Friston et al. (2012). These simulations, as the authors note, turn out to imple-
ment the kind of “active vision” account put forward in Wurtz et al. (2011). 
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ively  implement  an  inverse  model,  map-
ping from desired sensory consequences to
causes in intrinsic (muscle-based) coordin-
ates. In this simplification of conventional
schemes, descending motor commands be-
come topdown predictions of propriocept-
ive  sensations  conveyed  by  primary  and
secondary sensory afferents. (Friston 2011,
p. 491)

The  need  (prominent  in  approaches  such  as
Kawato 1999; Wolpert et al. 2003; and Franklin
&  Wolpert 2011)  for  a  distinct  inverse
model/optimal control calculation has now dis-
appeared. In its place we find a more complex
forward model mapping prior beliefs about de-
sired trajectories to sensory consequences, some
of which (the “bottom level” prorioceptive ones)
are automatically fulfilled. 

The need for efference copy has also disap-
peared. This is because descending signals are
already (just as in the perceptual case) in the
business  of  predicting  sensory  (both  proprio-
ceptive  and  exteroceptive)  consequences.  By
contrast, so-called “corollary discharge” (encod-
ing predicted sensory outcomes) is now endemic
and pervades the downwards cascade, since:

[…] every backward connection in the brain
(that conveys topdown predictions) can be
regarded as corollary discharge, reporting
the predictions of some sensorimotor con-
struct. (Friston 2011, p. 492)

This proposal may, on first encounter, strike the
reader as quite implausible and indeed too rad-
ical. Isn’t an account of the functional signific-
ance and neurophysiological reality of efference
copy one of the major success stories of contem-
porary  cognitive  and  computational  neurso-
cience? In fact, most (perhaps all) of the evid-
ence often assumed to favour that account is, on
closer examination, simply evidence of the per-
vasive and crucial role of forward models and
corollary  discharge—it  is  evidence,  that  is  to
say, for just those parts of the traditional story
that are preserved (and made even more cent-
ral) by PP. For example,  Sommer & (Wurtz’s
influential (2008) review paper makes very little

mention of  efference copy as such, but makes
widespread use of the more general concept of
corollary  discharge—though  as  those  authors
note, the two terms are often used interchange-
ably  in  the  literature.  A  more  recent  paper,
Wurtz et al. (2011),  mentions  efference  copy
only once, and does so only to merge it with
discussions  of  corollary  discharge  (which  then
occur 114 times in the text). Similarly, there is
ample  reason  to  believe  that  the  cerebellum
plays a special role here, and that that role in-
volves making or optimizing perceptual predic-
tions about upcoming sensory events (Bastian
2006;  Roth et al. 2013). But such a role is, of
course, entirely consistent with the PP picture.
This  shows,  I  suggest,  that  it  is  the  general
concept of forward models (as used by e.g., Mi-
all &  Wolpert 1996)  and  corollary  discharge,
rather than the more specific concept of effer-
ence copy as we defined it above, that enjoys
the  clearest  support  from  both  experimental
and cognitive neuroscience. 

Efference  copy  figures  prominently,  of
course,  in one particular set of  computational
proposals. These proposals concern (in essence)
the positioning of forward models and corollary
discharges within a putative larger cognitive ar-
chitecture involving multiple paired forward and
inverse models. In these “paired forward inverse
model”  architectures  (see  e.g.,  Wolpert &
Kawato 1998;  Haruno et al. 2003) motor com-
mands are copied to a stack of separate forward
models that are used to predict the sensory con-
sequences of actions. But acquiring and deploy-
ing such an architecture, as even its strongest
advocates concede, poses a variety of extremely
hard computational challenges (see  Franklin &
Wolpert 2011).  The  PP  alternative  neatly
sidesteps many of these problems—as we shall
see in section 2.4. The heavy lifting that is usu-
ally done by traditional efference copy, inverse
models, and optimal controllers is now shifted
to  the  acquisition  and  use  of  the  predictive
(generative) model—i.e., the right set of prior
probabilistic  “beliefs”.  This  is  potentially  ad-
vantageous if  (but only if)  we can reasonably
assume that these beliefs “emerge naturally as
top-down or empirical priors during hierarchical
perceptual inference” (Friston 2011, p. 492). 
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The deeper reason that efference copy may
be said to have disappeared in PP is thus that
the whole (problematic) structure of paired for-
ward  and  inverse  models  is  absent.  It  is  not
needed, because some of the predicted sensory
consequences (the predicted proprioceptive tra-
jectories) act as motor commands already. As a
result, there are no distinct motor commands to
copy,  and  (obviously)  no  efference  copies  as
such. But one could equally well  describe the
forward-model-based predictions of propriocept-
ive trajectories as “minimal motor commands”:
motor commands that operate (in essence) by
specifying results rather than by exerting fine-
grained limb and joint control. These minimal
motor  commands  (proprioceptive  predictions)
clearly influence the even wider range of predic-
tions concerning the exteroceptive sensory con-
sequences of upcoming actions. The core func-
tionality that is normally attributed to the ac-
tion of efference copy is thus preserved in PP, as
is the forward-model-based explanation of core
phenomena, such as the finessing of time-delays
(Bastian 2006) and the stability of  the visual
world despite eye-movements (Sommer & Wurtz
2006; 2008). 

2.4 Cost functions are absorbed by 
predictions.

Active inference also sidesteps the need for ex-
plicit cost or value functions as a means of se-
lecting  and sculpting  motor  response.  It  does
this (Friston 2011; Friston et al. 2012) by, in es-
sence, building these in to the generative model
whose  probabilistic  predictions  combine  with
sensory  inputs  in  order  to  yield  behaviors.
Simple examples of cost or value functions (that
might be applied to sculpt and select motor be-
haviors) include minimizing “jerk” (the rate of
change of acceleration of a limb during some be-
havior) and minimizing rate of change of torque
(for  these  examples  see  Flash &  Hogan 1985
and Uno et al. 1989 respectively). Recent work
on “optimal feedback control” minimizes more
complex  “mixed  cost  functions”  that  address
not  just  bodily  dynamics  but  also  systemic
noise  and  the  required  accuracy  of  outcomes
(see  Todorov 2004;  Todorov &  Jordan 2002).

Such cost functions (as Friston 2011, p. 496 ob-
serves) resolve the many-one mapping problem
that afflicts classical approaches to motor con-
trol. There are many ways of using one’s body
to achieve a certain goal, but the action system
has to choose one way from the many available.
Such devices  are  not,  however,  needed within
the framework on offer, since:

In active inference, these problems are re-
solved by prior beliefs about the trajectory
(that  may  include  minimal  jerk)  that
uniquely  determine  the  (intrinsic)  con-
sequences of (extrinsic) movements. (Fris-
ton 2011, p. 496)

Simple cost functions are thus folded into the
expectations that determine trajectories of mo-
tion. But the story does not stop there. For the
very same strategy applies to the notion of de-
sired  consequences  and  rewards  at  all  levels.
Thus we read that:

Crucially, active inference does not invoke
any “desired  consequences”.  It  rests  only
on experience-dependent learning and in-
ference: experience induces prior expecta-
tions,  which  guide  perceptual  inference
and action. (Friston et al. 2011, p. 157)

Notice  that  there  is  no  overall computational
advantage to be gained by this reallocation of
duties. Indeed, Friston himself is clear that:

[…] there is no free lunch when replacing
cost functions with prior beliefs [since] it is
well-known [Littman et al. (2001)] that the
computational complexity of a problem is
not reduced when formulating it as an in-
ference problem. (2011, p. 492)

Nonetheless, it may well be that this realloca-
tion (in which cost functions are treated as pri-
ors) has conceptually and strategically import-
ant consequences. It is easy, for example, to spe-
cify whole paths or trajectories using prior be-
liefs about (you guessed it) paths and trajector-
ies! Scalar reward functions, by contrast, specify
points or peaks. The upshot is that everything
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that can be specified by a cost function can be
specified  by  some  prior  over  trajectories,  but
not vice versa. 

Related concerns have led many working
roboticists to argue that explicit cost-function-
based  solutions  are  inflexible  and  biologically
unrealistic,  and  should  be  replaced  by  ap-
proaches that entrain actions in ways that im-
plicitly exploit the complex attractor dynamics
of embodied agents (see e.g.,  Thelen &  Smith
1994;  Mohan &  Morasso 2011;  Feldman 2009).
One way to imagine this broad class of solutions
(for a longer discussion, see Clark 2008, Ch. 1)
is by thinking of the way you might control a
wooden  marionette  simply  by  moving  the
strings attached to specific body parts. In such
cases:

The  distribution  of  motion  among  the
joints is the “passive” consequence of the
[…] forces applied to the end-effectors and
the “compliance” of different joints. (Mo-
han & Morasso 2011, p. 5)

Solutions such as these,  which make maximal
use of learnt or inbuilt “synergies” and the com-
plex bio-mechanics of the bodily plant, can be
very  fluently  implemented  (see  Friston 2011;
Yamashita & Tani 2008) using the resources of
active inference and (attractor-based) generat-
ive  models.  For  example,  Namikawa et  al.
(2011) show how a generative model with multi-
timescale dynamics enables a fluent and decom-
posable (see also Namikawa & Tani 2010) set of
motor behaviors. In these simulations:

Action per se, was a result of movements
that conformed to the proprioceptive pre-
dictions of […] joint angles [and] perception
and action were both trying to minimize
prediction errors throughout the hierarchy,
where movement minimized the prediction
errors at the level of proprioceptive sensa-
tions. (Namikawa et al. 2011, p. 4)

Another example (which we briefly encountered
in the previous section) is the use of downward-
flowing  prediction  to  side-step  the  need  to
transform  desired  movement  trajectories  from

extrinsic  (task-centered)  to  intrinsic  (e.g.,
muscle-centered) co-ordinates: an “inverse prob-
lem” that is said to be both complex and ill-
posed (Feldman 2009; Adams et al. 2013, p. 8).
In active inference the prior beliefs that guide
motor action already map predictions couched
(at high levels) in extrinsic frames of reference
onto proprioceptive effects defined over muscles
and effectors, simply as part and parcel of or-
dinary online control.

By re-conceiving cost functions as implicit
in bodies of expectations concerning trajectories
of motion, PP-style solutions sidestep the need
to solve difficult (often intractable) optimality
equations during online processing (see  Friston
2011; Mohan & Morasso 2011) and—courtesy of
the  complex  generative  model—fluidly  accom-
modate signaling delays, sensory noise, and the
many-one  mapping  between  goals  and  motor
programs.  Alternatives  requiring  the  distinct
and  explicit  computation  of  costs  and  values
thus arguably make unrealistic demands on on-
line processing, fail to exploit the helpful char-
acteristics of the physical system, and lack bio-
logically plausible means of implementation. 

These various advantages come, however,
at  a  price.  For  the  full  PP  story  now  shifts
much  of  the  burden  onto  the  acquisition  of
those  prior  “beliefs”—the  multi-level,  multi-
modal webs of probabilistic expectation that to-
gether  drive  perception and action.  This  may
turn out to be a better trade than it at first ap-
pears, since (see Clark in in press) PP describes
a biologically plausible architecture that is just
about maximally well-suited to installing the re-
quisite  suites  of  prediction,  through embodied
interactions with the training environments that
we encounter,  perturb,  and—at  several  slower
timescales—actively construct. 

3 Putting predictive processing, body, 
and world together again

An important feature of the full  PP account
(see Friston 2009; Hohwy 2013; Clark in press)
is that the impact of specific prediction error
signals can be systematically varied according
to  their  estimated  certainty  or  “precision”.
The precision of a specific prediction error is
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its  inverse variance—the size  (if  you like)  of
its error bars. Precision estimation thus has a
kind  of  meta-representational  feel,  since  we
are,  in  effect,  estimating  the  uncertainty  of
our  own representations  of  the  world.  These
ongoing (task and context-varying)  estimates
alter the weighting (the gain or volume, to use
the standard auditory analogy) on select pre-
diction error units, so as to increase the im-
pact  of  task-relevant,  reliable  information.
One key effect of this is to allow the brain to
vary the balance between sensory inputs and
prior expectations at different levels (see Fris-
ton 2009, p. 299) in ways sensitive to task and
context.11 High-precision  prediction  errors
have greater gain, and thus play a larger role
in driving processing and response. More gen-
erally,  variable  precision-weighting  may  be
seen as the PP mechanism for implementing a
wide range of attentional effects (see Feldman
& Friston 2010).

Subtle applications of this strategy, as we
shall  shortly  see,  allow  PP  to  nest  simple
(“quick and dirty”) solutions within the larger
context  of  a  fluid,  re-configurable  inner  eco-
nomy;  an  economy in  which  rich,  knowledge-
based  strategies  and fast,  frugal  solutions  are
now merely different expressions of a unified un-
derlying  web of  processing.  Within  that  web,
changing  ensembles  of  inner  resources  are  re-
peatedly  recruited,  forming  and  dissolving  in
ways  determined  by  external  context,  current
needs, and (importantly) by flexible precision-
weighting reflecting ongoing estimations of our
own uncertainty. This process of inner recruit-
ment is itself constantly modulated, courtesy of
the complex circular causal dance of sensorimo-
tor engagement, by the evolving state of the ex-
ternal environment. In this way (as I shall now
argue) many key insights from work on embodi-
ment and situated, world-exploiting action may
be comfortably accommodated within the emer-
ging PP framework.
11 Malfunctions  of  this  precision-weighting  apparatus  have  recently

been implicated in a number of fascinating proposals concerning the
origins and persistence of various forms of mental disturbance, in-
cluding  the  emergence  of  delusions  and  hallucinations  in  schizo-
phrenia, “functional motor and sensory symptoms”, Parkinson’s dis-
ease,  and  autism—see  Fletcher &  Frith (2009),  Frith &  Friston
(2012),  Adams et al. (2012),  Brown et al. (2013),  Edwards et al.
(2012), and Pellicano & Burr (2012). 

3.1 Nesting simplicity within complexity

Consider the well-known “outfielder’s problem”:
running to catch a fly ball in baseball. Giving
perception its standard role, we might assume
that the job of the visual system is to transduce
information about the  current  position of  the
ball so as to allow a distinct “reasoning system”
to project its future trajectory. Nature, however,
seems to have found a more elegant and effi-
cient solution. The solution, a version of which
was first proposed in Chapman (1968), involves
running in a way that seems to keep the ball
moving at a constant speed through the visual
field.  As long as the fielder’s  own movements
cancel any apparent changes in the ball’s optical
acceleration,  she  will  end  up  in  the  location
where the ball hits the ground. This solution,
OAC  (Optical  Acceleration  Cancellation),  ex-
plains why fielders,  when asked to stand still
and  simply  predict  where  the  ball  will  land,
typically do rather badly. They are unable to
predict  the  landing  spot  because  OAC  is  a
strategy  that  works  by means  of  moment-by-
moment self-corrections that,  crucially,  involve
the  agent’s  own  movements.  The  suggestion
that  we  rely  on  such  a  strategy  is  also  con-
firmed by some interesting virtual reality exper-
iments in which the ball’s trajectory is suddenly
altered in flight, in ways that could not happen
in the real world—see Fink et al. 2009). OAC is
a succinct case of fast, economical problem-solv-
ing. The canny use of data available in the optic
flow enables the catcher to sidestep the need to
deploy a rich inner model to calculate the for-
ward trajectory of the ball.12 

Such  strategies  are  suggestive  (see  also
Maturana &  Varela 1980)  of  a  very  different
role of the perceptual coupling itself. Instead of
using sensing to get enough information inside,
past the visual bottleneck, so as to allow the
reasoning  system  to  “throw  away  the  world”
and solve  the problem wholly internally,  such
strategies use the sensor as an open conduit al-
lowing  environmental  magnitudes  to  exert  a
constant influence on behavior. Sensing is here

12 There  are  related accounts  of  how dogs  catch Frisbees—a rather
more demanding task due to occasional dramatic fluctuations in the
flight path (see Shaffer et al. 2004). 
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depicted as the opening of a channel, with suc-
cessful  whole-system  behavior  emerging  when
activity in this channel is kept within a certain
range. In such cases:

[T]he focus shifts from accurately repres-
enting an environment to continuously en-
gaging that environment with a body so as
to stabilize appropriate co-ordinated pat-
terns of behaviour. (Beer 2000, p. 97)

These focal shifts may be fluidly accommodated
within  the  PP framework.  To see  how,  recall
that  “precision  weighting”  alters  the  gain  on
specific prediction error units, and thus provides
a means of systematically varying the relative
influence  of  different  neural  populations.  The
most familiar role of such manipulations is to
vary the balance of influence between bottom-
up  sensory  information  and  top-down  model-
based expectation. But another important role
is the implementation of fluid and flexible forms
of  large-scale  “gating”  among  neural  popula-
tions.  This  works  because  very  low-precision
prediction errors will have little or no influence
upon ongoing processing, and will fail to recruit
or nuance higher-level representations. Altering
the  distribution  of  precision  weightings  thus
amounts,  as  we  saw  above,  to  altering  the
“simplest  circuit  diagram”  (Aertsen &  Preißl
1991)  for  current  processing.  When  combined
with the complex, cascading forms of influence
made available  by the  apparatus  of  top-down
prediction, the result is an inner processing eco-
nomy that is  (see  Clark in press)  “maximally
context-sensitive”. 

This suggests a new angle upon the out-
fielder’s  problem.  Here  too,  already-active
neural predictions and simple, rapidly-processed
perceptual  cues must  work together  (if  PP is
correct)  to  determine  a  pattern  of  precision-
weightings for different prediction-error signals.
This creates a pattern of effective connectivity
(a  temporary  distributed  circuit)  and,  within
that  circuit,  it  sets  the  balance  between top-
down and bottom-up modes of influence. In the
case at hand, however,  efficiency demands se-
lecting a circuit in which visual sensing is used
to cancel the optical acceleration of the fly ball.

This means giving high weighting to the predic-
tion errors  associated with cancelling the ver-
tical acceleration of the ball’s optical projection,
and (to put it  bluntly) not caring very much
about  anything  else.  Apt  precision  weightings
here function to select  what to predict at any
given  moment.  They  may  thus  select  a  pre-
learnt, fast, low-cost strategy for solving a prob-
lem, as task and context dictate. Contextually-
recruited  patterns  of  precision  weighting  thus
accomplish  a form of  set-selection or  strategy
switching—an  effect  already  demonstrated  in
some simple simulations of cued reaching under
the influence of changing tonic levels of dopam-
ine firing—see Friston et al. (2012).

Fast, efficient solutions have also been pro-
posed in the context of reasoning and choice. In
an  extensive  literature  concerning  choice  and
decision-making, it has been common to distin-
guish between “model-based” and “model-free”
approaches (see e.g., Dayan & Daw 2008; Dayan
2012;  Wolpert et  al. 2003).  Model-based
strategies  rely,  as  their  name  suggests,  on  a
model of the domain that includes information
about  how  various  states  (worldly  situations)
are  connected,  thus  allowing  a  kind  of  prin-
cipled estimation (given some cost function) of
the value of a putative action. Such approaches
involve the acquisition and the (computationally
challenging) deployment of fairly rich bodies of
information  concerning  the  structure  of  the
task-domain. Model-free strategies, by contrast,
are said to “learn action values directly, by trial
and error, without building an explicit model of
the environment, and thus retain no explicit es-
timate  of  the  probabilities  that  govern  state
transitions” (Gläscher et al. 2010, p. 585). Such
approaches implement “policies” that typically
exploit simple cues and regularities while non-
etheless delivering fluent, often rapid, response. 

The model-based/model-free distinction is
intuitive,  and resonates with old (but increas-
ingly  discredited)  dichotomies  between  reason
and habit, and between analytic evaluation and
emotion. But it seems likely that the image of
parallel,  functionally  independent,  neural  sub-
systems will not stand the test of time. For ex-
ample, a recent functional Magnetic Resonance
Imaging (fMRI) study (Daw et al. 2011) sug-
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gests that rather than thinking in terms of dis-
tinct  (functionally  isolated)  model-based  and
model-free  learning  systems,  we  may  need  to
posit  a  single  “more integrated computational
architecture”  Daw et  al. 2011,  p.  1204),  in
which the different brain areas most commonly
associated  with  model-based  and  model-free
learning  (pre-frontal  cortex  and  dorsolateral
striatum,  respectively)  each trade  in  both
model-free  and  model-based  modes  of  evalu-
ations and do so “in proportions matching those
that  determine  choice  behavior”  (Daw et  al.
2011, p. 1209). Top-down information,  Daw et
al. (2011) suggest, might then control the way
different  strategies  are  combined  in  differing
contexts for action and choice. Within the PP
framework, this would follow from the embed-
ding of shallow “model-free” responses within a
deeper  hierarchical  generative  model.  By thus
combining the two modes within an overarching
model-based  economy,  inferential  machinery
can, by and large, identify the appropriate con-
texts in which to deploy the model-free (“ha-
bitual”)  schemes.  “Model-based”  and  “model-
free” modes of valuation and response, if this is
correct,  name  extremes  along  a  single  con-
tinuum, and may appear in many mixtures and
combinations determined by the task at hand. 

This suggests a possible reworking of the
popular suggestion (Kahneman 2011) that hu-
man  reasoning  involves  the  operation  of  two
functionally distinct systems: one for fast, auto-
matic, “habitual” response, and the other dedic-
ated  to  slow,  effortful,  deliberative  reasoning.
Instead of a truly dichotomous inner organiza-
tion, we may benefit from a richer form of or-
ganization in which fast, habitual, or heuristic-
ally-based modes of response are often the de-
fault, but within which a large variety of pos-
sible strategies may be available. Humans and
other animals would thus deploy multiple—rich,
frugal  and  all  points  in  between—strategies
defined across a fundamentally unified web of
neural resources (for some preliminary explora-
tion of this kind of more integrated space, see
Pezzulo et al. 2013).  Some of  those strategies
will  involve  the  canny  use  of  environmental
structure  –  efficient  embodied  prediction  ma-
chines, that is to say, will often deploy minimal

neural models that benefit from repeated calls
to world-altering action (as when we use a few
taps of the smartphone to carry out a complex
calculation).

Nor, finally, is there any fixed limit to the
complexities  of  the  possible  strategic  embed-
dings  that  might  occur  even  within  a  single
more integrated system. We might, for example,
use some quick-and-dirty heuristic  strategy to
identify a context in which to use a richer one,
or  use  intensive  model-exploring  strategies  to
identify a context in which a simpler one will
do. From this emerging vantage point the very
distinction between model-based and model-free
response  (and  indeed  between  System  1  and
System 2) looks increasingly shallow. These are
now just convenient labels for different admix-
tures of resource and influence, each of which is
recruited in  the same general  way as circum-
stances dictate.13

3.2 Being human 

There  is  nothing  specifically  human,  however,
about the suite of mechanisms explored above.
The basic elements of the predictive processing
story,  as  Roepstorff (2013,  p.  45)  correctly
notes, may be found in many types of organism
and model-system. The neocortex (the layered
structure housing cortical columns that provides
the most compelling neural implementation for
predictive processing machinery) displays some
dramatic variations in size but is common to all
mammals. What, then, makes us (superficially
at least) so very different? What is it that al-
lows  us—unlike dogs,  chimps,  or  dolphins—to
latch on to distal hidden causes that include not
just  food,  mates,  and relative social  rankings,
but  also  neurons,  predictive  processing,  Higgs
bosons, and black holes? 

One  possibility  (Conway &  Christiansen
2001) is that adaptations of the human neural
apparatus have somehow conspired to create, in
us, an even more complex and context-flexible

13 Current  thinking  about  switching  between  model-free  and  model-
based strategies places them squarely in the context of hierarchical
inference, through the use of “Bayesian parameter averaging”. This
essentially associates model-free schemes with simpler (less complex)
lower levels of the hierarchy that may, at times, need to be contextu-
alized by (more complex) higher levels.
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hierarchical  learning  system  than  is  found  in
other  animals.  Insofar  as  the  predictive  pro-
cessing framework allows for rampant context-
dependent influence within the distributed hier-
archy, the same basic operating principles might
(given a few new opportunities for routing and
influence) result  in the emergence of qualitat-
ively novel forms of behavior and control. Such
changes might explain why human agents dis-
play what Spivey (2007, p. 169) describes as an
“exceptional sensitivity to hierarchical structure
in any time-dependent signal”.

Another  (possibly  linked,  and  certainly
highly complementary) possibility involves a po-
tent complex of features of human life, in par-
ticular our ability to engage in temporally co-
coordinated social interaction (see Roepstorff et
al. 2010) and our ability to construct artifacts
and design environments. Some of these ingredi-
ents have emerged in other species too. But in
the  human  case  the  whole  mosaic  comes  to-
gether under the influence of flexible and struc-
tured symbolic language (this was the target of
the Conway and Christiansen paper mentioned
above)  and  an  almost  obsessive  drive  (To-
masello et al. 2005) to engage in shared cultural
practices. We are thus able to redeploy our core
cognitive skills in the transformative context of
exposure to what  Roepstorff et al. (2010) call
“patterned  sociocultural  practices”.  These  in-
clude the use of symbolic codes (encountered as
“material  symbols”  (Clark 2006)  and complex
social  routines  (Hutchins 1995,  2014)—and
more  general,  all  the  various  ploys  and
strategies  known as “cognitive niche construc-
tion” (see Clark 2008).

A simple example is the way that learning
to perform mental arithmetic has been scaffolded,
in some cultures, by the deliberate use of an aba-
cus. Experience with patterns thus made available
helps  to  install  appreciation  of  many  complex
arithmetical operations and relations (for discus-
sion of this,  see  Stigler 1984). The specific ex-
ample does not matter very much, to be sure, but
the general strategy does. In such cases, we struc-
ture (and repeatedly re-strutcture) our physical
and social environments in ways that make avail-
able  new  knowledge  and  skills—see  Landy &
Goldstone (2005).  Prediction-hungry brains,  ex-

posed in the course of embodied action to novel
patterns of sensory stimulation, may thus acquire
forms of knowledge that were genuinely out-of-
reach prior  to  such physical-manipulation-based
re-tuning  of  the  generative  model.  Action  and
perception thus work together to reduce predic-
tion error against the more slowly evolving back-
drop  of  a  culturally  distributed  process  that
spawns  a  succession  of  designed  environments
whose impact on the development (e.g., Smith &
Gasser 2005) and unfolding (Hutchins 2014) of
human thought and reason can hardly be overes-
timated. 

To further appreciate the power and scope
of  such  re-shaping,  recall  that  the  predictive
brain is not doomed to deploy high-cost, model-
rich  strategies  moment-by-moment  in  a  de-
manding  and  time-pressured  world.  Instead,
that very same apparatus supports the learning
and contextually-determined deployment of low-
cost  strategies  that  make  the  most  of  body,
world, and action. A maximally simple example
is  painting  white  lines  along  the  edges  of  a
winding cliff-top road.  Such environmental  al-
terations allow the driver to solve the complex
problem of keeping the car on the road by (in
part)  predicting  the  ebb  and  flow  of  various
simpler optical features and cues (see e.g., Land
2001). In such cases, we are building a better
world in which to predict, while simultaneously
structuring  the  world  to  cue  the  low-cost
strategy at the right time. 

3.3 Extending the predictive mind

All this suggests a very natural model of “ex-
tended  cognition”  (Clark &  Chalmers 1998;
Clark 2008), where this is simply the idea that
bio-external  structures  and  operations  may
sometimes form integral parts of an agent’s cog-
nitive routines.  Nothing in  the PP framework
materially alters, as far as I can tell, the argu-
ments previously presented, both pro and con,
regarding the possibility and actuality of genu-
inely  extended  cognitive  systems.14 What  PP
14 For  a  thorough  rehearsal  of  the  positive  arguments,  see  Clark

(2008). For critiques, see  Rupert (2004,  2009),  Adams & Aizawa
(2001), and Adams & Aizawa (2008). For a rich sampling of the
ongoing debate, see the essays in  Menary (2010) and  Estany &
Sturm (2014). 

Clark, A. (2015). Embodied Prediction.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 7(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570115 15 | 21

http://www.open-mind.net/
http://dx.doi.org/10.15502/9783958570115
http://www.open-mind.net/collection.pdf#nameddest=embodied-prediction


www.open-mind.net

does offer, however, is a specific and highly “ex-
tension-friendly” proposal concerning the shape
of the specifically neural contribution to cognit-
ive success. To see this, reflect on the fact that
known external (e.g., environmental) operations
provide—by  partly  constituting—additional
strategies  apt  for  the  kind  of  “meta-model-
based”  selection  described  above.  This  is  be-
cause actions that engage and exploit  specific
external resources will now be selected in just
the  same  manner  as  the  inner  coalitions  of
neural  resources  themselves.  Minimal  internal
models that involve calls to world-recruiting ac-
tions may thus be selected in the same way as a
purely internal model. The availability of such
strategies (of trading inner complexity against
real-world action) is the hallmark of embodied
prediction machines.

As a simple illustration, consider the work
undertaken by Pezzulo et al. (2013). Here, a so-
called “Mixed Instrumental Controller” determ-
ines whether to choose an action based upon a
set of simple, pre-computed (“cached”) values,
or by running a mental simulation enabling a
more flexible, model-based assessment of the de-
sirability,  or  otherwise,  of  actually  performing
the action. The mixed controller computes the
“value  of  information”,  selecting  the more  in-
formative (but costly) model-based option only
when that value is sufficiently high. Mental sim-
ulation,  in  such cases,  then produces  new re-
ward expectancies  that  can determine current
action by updating the values used to determine
choice.  We can think of  this  as  a  mechanism
that,  moment-by-moment,  determines  (as  dis-
cussed in previous sections) whether to exploit
simple, already-cached routines or to explore a
richer  set  of  possibilities  using  some  form of
mental simulation. It is easy to imagine a ver-
sion of the mixed controller that determines (on
the basis of past experience) the value of the in-
formation that it believes would be made avail-
able by some kind of cognitive extension, such
as the manipulation of an abacus, an iPhone, or
a physical model. Deciding when to rest, con-
tent with a simple cached strategy, when to de-
ploy a more costly mental simulation, and when
to exploit the environment itself as a cognitive
resource are thus all options apt for the same

kind  of  “meta-Bayesian”  model-based  resolu-
tion.

Seen from this perspective, the selection of
task-specific  inner  neural coalitions  within  an
interaction-dominated  PP  economy  is  entirely
on  a  par  with  the  selection  of  task-specific
neural–bodily–worldly ensembles.  The  recruit-
ment and use of extended (brain–body–world)
problem-solving  ensembles  now  turns  out  to
obey many of the same basic rules, and reflects
many  of  the  same  basic  normative  principles
(balancing efficacy and efficiency, and reflecting
complex precision estimations) as does the re-
cruitment of temporary inner coalitions bound
by effective connectivity. In each case, what is
selected  is  a  temporary  problem-solving  en-
semble (a “temporary task-specific device”—see
Anderson et al. 2012) recruited as a function of
context-varying estimations of uncertainty. 

4 Conclusion: Towards a mature science 
of the embodied mind

By self-organizing around prediction error, and
by learning a generative rather than a merely
discriminative  (i.e.,  pattern-classifying)  model,
these approaches realize many of  the goals  of
previous work in artificial neural networks, ro-
botics, dynamical systems theory, and classical
cognitive science. They self-organize around pre-
diction  error  signals,  perform  unsupervised
learning using a multi-level architecture, and ac-
quire a satisfying grip—courtesy of the problem
decompositions  enabled  by  their  hierarchical
form—upon  structural  relations  within  a  do-
main. They do this, moreover, in ways that are
firmly grounded in the patterns of sensorimotor
experience  that  structure  learning,  using  con-
tinuous, non-linguaform, inner encodings (prob-
ability density functions and probabilistic infer-
ence). Precision-based restructuring of patterns
of effective connectivity then allow us to nest
simplicity  within  complexity,  and  to  make  as
much (or as little)  use of  body and world as
task and context dictate. 

This is encouraging. It might even be that
models  in  this  broad ballpark offer  us a  first
glimpse of the shape of a fundamental and uni-
fied science of the embodied mind.
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