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The debate on the neural correlates of visual consciousness often focuses on the question of which additional processing has to happen for a visual representation to enter consciousness. However, a related question that has only rarely been addressed is which brain regions directly encode specific contents of consciousness. The search for these core neural correlates of contents of consciousness (NCCCs) requires establishing a mapping between sensory experiences and population measures of brain activity in specific brain regions. One approach for establishing this mapping is multivariate decoding. Using this technique, several properties of NCCCs have been investigated. Masking studies have revealed that information about sensory stimuli can be decoded from the primary visual cortex, even if the stimuli cannot be consciously identified by a subject. This suggests that information that does not reach awareness can be encapsulated in early visual stages of processing. Visual imagery representations and veridical perception share similar neural representations in higher-level visual regions, suggesting that these regions are directly related to the encoding of conscious visual experience. But population signals in these higher-level visual regions cannot be the sole carriers of visual experiences because they are invariant to low-level visual features. We found no evidence for increased encoding of sensory information in the prefrontal cortex when a stimulus reaches awareness. In general, we found no role of the prefrontal cortex in encoding sensory experiences at all. However, the improved discrimination of sensory information during perceptual learning could be explained by an improved read-out by the prefrontal cortex. One possible implication is that prefrontal cortical regions do not participate in the encoding of sensory features per se. Instead they may be relevant in making decisions about sensory features, without exhibiting a re-representation of sensory information.
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1 Introduction
Neural theories of visual consciousness frequently focus on the question of what is needed for a visual stimulus to enter consciousness. A common notion is that representations and processes in sensory regions of the brain can operate outside of conscious perception, and that some “extra property of processing” has to come on top in order to let these representations enter conscious experience (e.g., Dehaene & Naccache 2001). This extra processing property can range from neural synchronization of neurons encoding the stimulus (Engel & Singer 2001), recurrent and feedback processing (Lamme 2006, this collection; Pascual-Leone & Walsh 2001; Singer this collection), to participation in a global coherent process, known as neuronal workspace theories (Baars 2002; Dehaene & Naccache 2001). Discussion of the neural correlates of consciousness (NCC) has often focused on this extra ingredient needed to bring a stimulus representation into consciousness. However, a related, but somewhat different question has often been neglected: Which neural representations (can) precisely participate in encoding the various dimensions of conscious experience? For this it is not enough to establish a correlation between conscious perception and neural signals. That would yield a far too large set of candidate brain regions, including, say, signal patterns in the retina that also correlate with conscious perception. Instead, it would be desirable to identify which neural representations most closely encode specific contents of consciousness and can be used to explain dimensions of conscious perception under as many different conditions as possible, and down to the level of single contents.  This article will focus on how to identify such core neural correlates of contents of consciousness (NCCCs; Chalmers 2000; Block 2007; Koch 2004). 
It is desirable that studies of visual awareness take NCCCs into account because specific theories of visual awareness make specific predictions regarding the encoding and distribution of sensory information (e.g., Dehaene & Naccache 2001; see also Baars 2002). In the following, I will first outline the more standard techniques for identifying NCCCs, along with their shortcomings. The next step proposes to use multivariate decoding techniques (reviewed e.g., in Haynes & Rees 2006) as a tool to identify NCCCs. Decoding can serve as an empirical technique that can establish which brain regions bear most information about specific contents of visual experience. This is an important first step towards establishing a more rigid mapping between visual phenomenal states and content-encoding brain signals. Then, several examples will be presented where multivariate decoding of visual experiences can help inform specific questions regarding NCCCs, such as whether information in V1 participates in visual awareness, whether imagery and perception share the same underlying neural codes, or whether the prefrontal cortex contains any dynamic NCCCs for coding specific dimensions of conscious experience. 




    
      
        2 Why content matters: Binocular rivalry and the multiple levels of conscious experience

        
          In 1996 Nikos Logothetis & David Leopold published a landmark study on the neural mechanisms of visual awareness. They presented their participating monkeys with a very elaborate visual stimulus display, which allowed them to show one image to one eye and another image to the other eye. For example, the left eye might be stimulated with a line pattern tilted to the left, and the right eye might be stimulated with a line pattern tilted to the right. In such cases, where conflicting input is presented to the two eyes, human participants don’t experience a fusion between the two images. Instead, conscious visual perception alternates between phases where one of the eyes’ inputs become visible and phases where the other eye’s input are seen. Perception waxes and wanes more or less randomly between two perceptual experiences—despite constant stimulation. Similarly, the monkeys that were exposed to these binocular rivalry stimuli indicated behaviorally by pressing levers that their perception alternated between the inputs to the two eyes.

          In parallel, Leopold & Logothetis (1996) investigated what happened to the firing patterns of single neurons in the monkeys’ brains. Their setup allowed them to not just look at one location in the brain, but to assess neural correlates in several visual brain regions. They found only a small percentage of single neurons in early visual cortex (V1/V2) whose firing pattern was modulated by the stimulus that was currently dominant. In contrast, in a higher-level visual area—V4—they found that many more cells changed their firing rates with changes in perception. This establishes a clear dissociation between early visual areas where neural signals seem not to correlate with awareness and high visual areas where they do. In a follow-up experiment, Sheinberg & Logothetis (1997) investigated the involvement of even higher visual regions in the temporal cortex in binocular rivalry. Because cells in these regions preferentially respond to more elaborate visual features, they used complex shapes and images, such as, for example, an abstract sunburst pattern or a picture of a monkey face (Figure 1a). They found that in the superior temporal sulcus and in the inferior temporal cortex, a large percentage of cells modulated their firing rate with perceptual dominance. Taken together, these studies seem to suggest that visual awareness affects signals only at late stages of the visual system. 

          
            [image: Image - Figure 1.jpg]
            Figure 1: Binocular rivalry and levels of perception. (a) Two conflicting stimuli, one presented to the left and one to the right eye, lead to a perceptual alternation between phases where the input of either the left or right eye is consciously seen. In monkey single-cell electrophysiology, this perceptual alternation has a correlate in higher-level visual regions of the temporal lobe, but activity in earlier visual regions shows only small changes in activity patterns. Presumably, signals in the temporal cortex encode the complex figural properties of the stimuli, such as the left being a sunburst pattern and the right being an image of a monkey face. However, due to the invariance of brain responses in higher-level visual regions to low-level features, this cannot explain the perceptual difference between the rivalry of the left and of the right sunburst pattern shown in (b), where the central circle has changed colour but the entire shape remains similar (monkey illustration by Chris Huh, Wikimedia Commons).
          

          But what does it mean exactly that visual awareness only affects late stages of visual processing? Does it mean that high level visual areas contain all the neural correlates of contents consciousness (NCCCs), in a way similar to a CD encoding the contents of a piece of music? If the signals in these high visual areas are really responsible for encoding all contents of visual experiences then any aspect of conscious perception that changes during binocular rivalry should be explainable by changes in signals in these higher-level brain regions. There are reasons to believe that this cannot be the case. Consider the two images as shown in Figure 1a. At one instant the monkey might consciously see the face image. This percept would be encoded in activity patterns in the higher visual areas. In the next instant the monkey might see a sunburst pattern, and this experience would also be encoded in the higher visual cortex. At first sight this seems reasonable. Higher-level visual areas are specialized for complex visual information and object features (Sáry et al. 1993). So cells that have a preference for faces might respond during dominance of the face image, and cells with a preference for sunburst patterns might respond during the dominance of that pattern. But there is one difficulty in this interpretation. The images have a high-level interpretation as complex shapes, but they are also composed of a multitude of minute visual features, edges, surfaces, colours, etc. During rivalry, our perception does not only change according to the abstract interpretation, with respect to abstract, high-level interpretation, but also in terms of the minute, fine-grained details of visual experience (see Figure 1b). 

          This poses a problem because responses in higher-level visual areas are invariant with respect to low-level features (Sáry et al. 1993). Cells in higher-level visual areas in the inferior temporal cortex respond selectively to specific object features in an invariant pattern (Figure 2). A cell specialized for detecting, say, a circle, will respond to this circle irrespective of the low-level features by which it is defined (here brightness, contrast, and colour contrast). This means that such a cell disregards the low-level features and does not convey information about them any more. While cells in high-level visual areas might be able to explain why we see a face one moment and a sunburst pattern the next, they cannot explain why the sunburst pattern is yellow instead of red, or why it is one specific visual pixel collection out of the many possible that would be seen as a sunburst pattern. Thus, visual experience is a multilevel phenomenon, and a theory of the neural correlates of visual awareness will have to be able to explain all the levels of our experience, not just one. This clearly shows the importance of a content-based approach to visual consciousness.

          
            [image: Image - Figure 2.jpg]
            Figure 2: Invariance of single-cell responses in higher-level visual areas. Responses in low-level visual areas (top) are tuned to low-level features such as colour or luminance. In contrast, responses in higher-level object-selective regions (bottom) are largely invariant with respect to these low-level features (Sáry et al.1993).
          

        

      

    

  3 Approaches to content-selectivity in human neuroimaging and their problems
The limited resolution of current neuroimaging techniques poses a substantial problem for the investigation of the encoding of contents in the human brain, and thus for studies on NCCCs in the human brain. The most important format in which information is coded in the brain is the cortical column (Fujita et al. 1992). Cortical columns consist of small groupings of cells with similar tuning properties, clustered together at a scale of around half a millimetre. Even functional magnetic resonance imaging (fMRI) does not routinely have a sufficient resolution to selectively study the activation of individual cortical columns (but see e.g., Yacoub et al. 2008 for recent progress). For this reason, most research into perceptual contents has relied on experimental “tricks” that allow the tracking of contents indirectly. 
In frequency tagging, a visual stimulus is tagged with a specific and unique flicker frequency. This then allows for tracing of the processing of this stimulus by searching for brain signals that exhibit the same flicker frequency. This approach has been used to study binocular rivalry, but in quite a different way to that undertaken by Leopold & Logothetis (1996). Tononi et al. (1998) tagged the inputs of the two eyes with different frequencies. They found that the currently dominant percept was accompanied by wide-spread increases in Magnetoencephalography (MEG)-signals at the tagged frequency across multiple brain regions, mostly in the early visual and temporal cortex. This is a very powerful approach and it reveals how wide-spread the effects are when a stimulus reaches visual awareness. However, it is not always clear whether these findings indicate that the corresponding perceptual features of the stimuli, in this case the orientation of line elements, really are distributed throughout the brain. The key problem is that the feature that is traced (the frequency) is not the main feature that is perceptually relevant (orientation). One could imagine, say, that activity in higher-level brain regions that exhibits the frequency of the dominant stimulus might not be involved in coding the sensory content, but instead in detecting the presence of a change in the visual image, irrespective of what the corresponding feature is. The frequency-tagging approach does not allow for distinguishing between these alternatives.
Another approach to tracking content-selective processing is to use stimuli that are known to activate specific content-selective brain regions (Tong et al. 1998; Rees et al. 2000). For example, in a study on binocular rivalry, Tong et al. (1998) used faces and houses as rivalry stimuli. These stimuli are known to activate different brain regions, the fusiform face area (FFA) and the parahippocampal place area (PPA). They found that activity in a content-selective region increased when the corresponding stimulus became perceptually dominant. This goes further than the frequency-tagging approach in that it allows for drawing the plausible conclusion that awareness leads to increased activity in content-selective regions. However, this approach again suffers from several problems. First, it only allows us to address the hypothesis related to very specific stimuli (typically faces and houses) and to very specific brain regions. Because the approach relies on the existence of macroscopic content-selective regions, it would not be possible to test whether, say, the prefrontal cortex, receives sensory information when a stimulus reaches awareness. A further problem is that the high selectivity of FFA and PPA has long been questioned (Haxby et al. 2001). 




    
      
        4 Mapping and decoding 

        
          It seems a different, more direct, and generic approach is necessary in order to identify the neural correlates of the contents of consciousness. It may help to start in the simplest possible way. If we want to explain the occurrence of a conscious experience E1 with the occurrence of a brain state B1 then—roughly speaking—the experience and the brain state should always happen together. If we want to explain N experiences E1…N with brain states, we will need N different brain states B1…N in order to encode the different experiences. If brain data from a specific area only adopts one of five states every time a participant has one of ten experiences it is impossible to explain the experiences through the different brain states. Ultimately this boils down to a mapping problem (Haynes 2009; Figure 3).

          
            [image: Image - Figure 3.jpg]
            Figure 3: Principles of mapping between mental states and brain states (see text; adapted from Haynes2009 with additional images from Wikipedia).
          

          A set of conscious sensations, here visual percepts of six different animals, can be encoded in a neural carrier in multiple ways. Three principles are illustrated in Figure 3a. One hypothetical way to code these six animals would be to use a single neuron and to encode the objects by the firing rates of this neuron. One would assign one specific firing rate to each of the different animals, say 1Hz to the dog, 2Hz to the cat and 3Hz to the mouse, etc. This approach is also referred to as a univariate code, because it uses only one single parameter of neural activity. It has the advantage of requiring only a single neuron. In principle it is possible to encode many different objects with a single neuron. The idea would be very similar to a telephone number, if one thinks of different numbers corresponding to different firing rates. In theory it would be possible to encode every single telephone in the world in this way, provided that the firing rates could be established very precisely and reliably. The disadvantage with this approach—even if firing rates could be established with great precision—is that it can only handle exclusive thoughts, i.e. it has no way of dealing with a superposition of different animals, say a cat together with a dog. 

          A different approach is not to use a single neuron to encode different thoughts, but instead to use a set of neurons to encode a set of thoughts. This population-based approach is also termed “multivariate”. One way to encode thoughts about six different animals would be to assign one specific neuron to the occurrence of each thought. Neuron one, say, might fire when a person thinks about a dog; neuron two would fire when they were thinking about a cat, etc. Here the firing rate is irrelevant; only a threshold is needed, such that one has a way of deciding when a neuron is “active” or “not active”. This specific coding scheme is variably termed “sparse code”, “labelled line code”, “cardinal cell code” or “grandmother cell code” (see e.g., Quiroga et al. 2008). It has the advantage of being able to handle arbitrary superpositions and combinations of thoughts, say thoughts about a meeting of a dog, a cat, and a mouse. A disadvantage is that a different neuron is needed for the encoding of each new entity. N neurons can only encode N different thoughts. Given that the average human brain comprises 86 billion neurons (Azevedo et al. 2009) this might not seem too big a problem. A different way to use a population of neurons to encode a set of thoughts would be a distributed multivariate code. Here, each mental state is associated with a single activation pattern in the neural population, but now arbitrary combinations of neurons are possible for the encoding of each single thought. This allows for the encoding of 2N thoughts with N neurons, if each neuron is only considered to be “on” or “off”.

          There are various examples of these different types of codes. The encoding of intensity follows a univariate code: The difference between a brighter and a darker image is encoded in a higher versus a lower firing rate of the corresponding neurons in the visual cortex (see e.g., Haynes 2009). However, to date, I am not aware of any example where different higher-level interpretations of stimuli are coded in a univariate format. There are many examples of labelled line codes. The retinotopic location within the visual field is encoded in a sparse, labelled line format (e.g., Sereno et al. 1995). One position in the visual field is coded by one set of neurons in the early visual cortex; another position is encoded by a different set of neurons. If two objects appear in the visual field simultaneously, then both of the corresponding sets of neurons become active simultaneously. A similar coding principle is observed for auditory pitch, where different pitches are coded in different cells in the form of a tonotopic map (Formisano et al. 2003). The somatosensory and motor homunculi are also examples of labelled line codes, each position in the brain corresponding to one specific position in the body (Penfield & Rasmussen 1950). A distributed multivariate code is, for example, used to code different objects (Haxby et al. 2001) or different emotions (Anders et al. 2011).

          When identifying the mapping between brain states and mental states one is generally interested in identifying which specific population of neurons is a suitable candidate for explaining a particular class of visual experiences. For this it is possible to formulate a number of constraints (Haynes 2009). First, the mapping needs to assign one brain state to each mental state in which we are interested. In other words, the mapping has to be total (Figure 3b). This should be easy—it just means that we can assign one measured brain state to each different mental state. Second, the mapping cannot assign the same brain state to two different mental states. Otherwise the brain states would not be able to explain the different mental states. Technically this means the mapping has to be invertible, or injective. Every brain state should be assigned to no more than one mental state. However, it is possible—in the sense of multiple realisation—that multiple brain states are assigned to the same mental state, as long as neither of these brain states co-occurs with other mental states. The brain states referred to here only mean brain states that are relevant for explaining a set of mental states. If we want to explain thoughts about six animals, say, it might not be necessary that brain states in the motor cortex are different for the different animals. However, if one wants to propose one set of neurons (say, those in the lateral occipital complex, Malach et al. 1995) as a candidate for explaining animal experiences, then this can only hold if the abovementioned mapping requirements are fulfilled.

          In practice it will be very difficult to establish this mapping directly. One major problem is that we can’t measure brain states in sufficient detail with current neuroscience techniques. Non-invasive measurement techniques such as electroencepholography (EEG) or functional magnetic resonance imaging (fMRI) have very limited spatial resolution. FMRI for example resolves the brain with a measurement grid of around 1–3mm, so that each measurement unit (or voxel) contains up to a million cells. And the temporal resolution of fMRI is restricted because fMRI measures the delayed and temporally-extended hemodynamic response to neural stimulation. While it is possible—to some degree—to reconstruct visual experiences from fMRI signals (e.g., Miyawaki et al. 2008), fMRI cannot resolve temporal details of neural processes, such as the synchronized activity of multiple cells. But it is not only EEG and fMRI that have limited resolution: Invasive recording techniques are typically restricted to individual well-circumscribed locations, where surgery is performed. And even with multielectrodes it is not possible to identify the state of each individual neuron in a piece of living tissue. 

          Another important limitation lies in our ability to precisely characterize and cognitively penetrate phenomenal states (e.g., Raffman 1995). There is currently no psychophysical technique that would allow us to characterize the full details of a person’s visual experiences at each location in the visual field. Verbal reports or button presses can convey only a very reduced picture of the true complexity of visual experiences. So ultimately, the mapping requires precision from both psychology and neuroscience, and any imprecision in either approach will blur the mapping and distort the interpretation.

          The next best option short of establishing full mapping is to use decoding techniques that follow a similar logic. Brain-based decoding is also referred to as “brain reading” or “multivoxel pattern analysis” (see Haynes & Rees 2005 for a review). The basic idea is to see to which degree it is possible to infer a mental state from a measurement of a brain state. Say you want to test whether the lateral occipital complex is a suitable candidate for encoding visual thoughts about animals. You test if it is possible to infer which animal a person is currently seeing by training a classifier to learn the association between animal and brain activation pattern, and then one needs to test whether the classifier can correctly assign the animal that belongs to a new measurement of brain activity. In the following, this approach will be explained in detail.

          Take for example a hypothetical fMRI-measurement of the human brain within a three by three grid of locations, amounting to nine voxels (Figure 4a). These nine voxels can be systematically resorted into a column of numbers (or vectors), where each entry denotes the activation at one location (high values correspond to strong fMRI responses). Say one was interested in testing whether these nine voxels contain information about two different visual images, perhaps a dog and a cat. The question that needs to be addressed is whether the response patterns (i.e., the vectors) are sufficiently different to allow for distinguishing between the animals, based on these brain activity measurements alone. The vector is not a useful way to see whether this classification is possible. It can help to visualize the same information in a two-dimensional coordinate system. Take the responses to the dog. One can think of the first and second entries in the vector as x- and y-values that define points in a coordinate system. The response in the first voxel (x) to the dog is a low value (2), while the second value (y) is a high value (8). When plotted in a two-dimensional coordinate system (Figure 4b), this yields a point in the top left of the coordinate system, shown here in red. Repeated measurements of the brain response to the dog yield a small cloud of red points. Repeatedly measured brain responses to the cat have high values in voxel 1 (x) and low values in voxel 2 (y). In the two-dimensional coordinate system this yields a cloud of blue points in the bottom right of the coordinate system. Clearly the responses are separable in this two-dimensional coordinate system, so the two animals enjoy reliably separate neural representations in this set of nine voxels. In this hypothetical example, each of the two voxels alone would be sufficiently informative about the category of animal. By collapsing the points for voxel one onto the x-axis it becomes clear that the two distributions of points (red and blue) are sufficiently different to allow for telling the two apart. The same holds for voxel two by collapsing to the y-axis. This is akin to a labelled line code, with one line for “dog” and one line for “cat”. 

          However, there are cases where the two distributions will not be so easily separable. Figure 4c shows an example where the individual voxels do not have information about the animals. The collapsed or “marginal” distributions largely overlap. There is no way to tell a cat response from a dog response by looking at either voxel one or two alone. However, by taking into account the joint activity in both voxels, the two animals become clearly separable. Responses to the dog all cluster to the top left of the diagonal and responses to the cat cluster to its bottom right. This joint consideration of the information contained in multiple voxels is the underlying principle of multivariate decoding. The line separating the two distributions is known as the decision boundary. Decision boundaries are not necessarily straight lines. Many other types of distributions of responses are possible. Figure 4d, for example, shows a non-linear decision boundary. Finding the optimal decision boundary is the key objective in the field of machine learning (Müller et al. 2001), where many different types of classifiers have been developed (most well known are support vector classifiers). In order to identify the decision boundary the available data are split into training and test data. The test data are put aside and only the training data are then used to find a decision boundary, as, for example, is shown in Figure 4e. The crucial test is then performed with the remaining test data. The classifier is applied to these data to see to which degree it is able to correctly assign the labels. Depending on which side of the decision boundary a test data point falls upon, it will yield either a correct or an incorrect classification.

          
            [image: Image - Figure4.jpg]
            Figure 4: Mental state decoding using classification techniques (image adapted from Haynes & Rees 2005).
          

          Please note the similarity between the mapping of mental states and brain states. The red cloud of points in Figure 4b shows a two-dimensional response pattern that corresponds to the neural code for percepts of dogs. The spread of the point cloud (i.e. the fact that repeated measurements don’t yield identical values) could mean two things. Either the spread reflects noise and uncertainty that is typically inherent in measurements of neural data. This could, for example, reflect the fact that single fMRI voxels can sample many thousand cells, only few of which might be involved in processing. Additionally, physiological background rhythms can influence the signals and contribute to noise (Fox et al. 2006). Alternatively, however, the spread of the points could also be an inherent property of the representation. This would suggest that every time a person sees or visual imagines a dog, a slightly different activation pattern is observed in the brain. This would then be evidence of multiple realization. Current measurement techniques do not have sufficient precision to distinguish between these two accounts. One difference between the multivariate mapping shown in Figure 3a (right) and the classification in Figure 4 is that the classification shows response distributions where each individual variable (voxel, channel) can adopt a graded value, whereas the values in Figure 3a (right) are only binary.

        

      

    

  
    
      
        5 What does multivariate decoding reveal about NCCCs?

        
          The importance of information theory for understanding the neural correlates of consciousness has been stressed repeatedly, most notably by Giulio Tononi (2005). His information integration theory focuses on the information-based properties of neural processes and uses these special properties to provide a general explanation of consciousness. In contrast, the multivariate decoding account presented here attempts to solve the much more basic question of which neural populations provide the best account for which visual experiences. As mentioned above, this can be thought of as a search for the core neural correlates of the contents of consciousness (NCCCs), which have been postulated in similar forms by previous authors (Chalmers 2000; Block 2007; Koch 2004). While these proposals for core NCCCs have been influential in theoretical discussions on consciousness, they have only rarely been directly linked to neuroscience research, which requires spelling out how the NCCC can be established in empirical data. In the following, various studies of multivariate decoding from our lab will be presented that have implications for identifying NCCCs.

          
            5.1 Example 1: Encapsulated information in V1

            There has long been a debate as to whether the primary visual cortex (V1) is a neural correlate of visual consciousness. Crick & Koch (1995) postulated that V1 does not encode visual experiences for several reasons. First, V1 does not have the anatomical projections to the prefrontal cortex that would allow for a direct read-out of information in V1. This would be required to explain a key distinguishing feature of conscious experiences: that we can voluntarily act upon them. A second reason is that V1 encodes information of which we are not aware. Psychophysical experiments, for example, show that V1 can encode orientation information of which we are not aware (He et al. 1996). We thus directly assessed the link between information encoding in V1 and visual awareness (Haynes & Rees 2005). Specifically, we investigated the effects crossing the threshold to awareness has on the neural coding of simple visual features. Participants viewed oriented “grating” images (Figure 5) and had to tell whether they were tilted to the left or to the right. In one condition the images were clearly visible, in the other condition they were rendered invisible by rapidly alternating the orientation stimulus with a mask. In this condition participants were not able to tell the difference between the two orientation stimuli (Figure 5). 

            We then applied a classifier to fMRI-signals from early visual regions V1, V2, and V3 to see if it would be possible to decode the orientation of stimuli. We found that orientation for the visible stimuli could be decoded from all early visual regions, V1, V2, and V3 (Figure 5, right). This is in line with previous research on encoding of orientation information in early visual areas (Bartfeld & Grinvald 1992). Interestingly, we were able to decode the orientation from V1 even for invisible stimuli. This means that V1 presumably continues to carry low-level feature information even when a participant can’t access this information. V2 and V3, however, only had information for visible stimuli, not for invisible stimuli. Please note that an alternative interpretation could be that subjects perceive the subtle differences between masked stimuli, but they cannot report or reason about them. However, in psychophysics an absence of discriminability is typically considered a strong criterion for absence of awareness. This finding is interesting for several reasons. First, it demonstrates that information can be encapsulated in a person’s early visual cortex, without them being able to access this information. This suggests that V1 is not an NCCC for conscious orientation perception. Second, it shows that one explanation why stimuli are rendered invisible by visual masking is that the information that is available at early stages of processing (V1) is not passed on to the next stages of processing in V2 and V3. Similar encapsulation of information has also been observed for parietal extinction patients in higher-level visual areas with more conventional neuroimaging approaches (Rees et al. 2000). 

            
              [image: Image - Figure5.jpg]
              Figure 5: Decoding the orientation of invisible grating stimuli from patterns of activity in early visual areas. Target stimuli were line patterns that were either tilted top left to bottom right, or top right to bottom left. They were rapidly alternated with mask stimuli so that participants were unable to identify the target orientation. The classification accuracy for these “invisible” gratings was above chance in area V1, but not in V2 or V3. For visible orientation stimuli the classification was above chance in all three early visual areas (figure taken from Haynes & Rees 2005).
            

            
              5.2 Example 2: Imagery and perception

              There has also been a long debate on the neural mechanisms underlying visual imagery. One important question is whether the NCCCs underlying imagery are the same—or at least overlapping—with those for veridical perception. One study (Kosslyn et al. 1995) found that imagery activated even very early stages of the visual cortex. This fits with a mechanism that encodes visual images as a replay of representations of veridical percepts. However, this does not reveal whether the activation of the early visual cortex really participates in encoding the imagined contents. Instead, these regions might be involved in ensuring the correct spatial distribution of attention across the visual field (Tootell et al. 1998). The question of whether the neural representations of veridical percepts are the same as those for visual imaginations needs to be established in addition. 

              
                [image: Image - Figure6.jpg]
                Figure 6: Visual imagery. (a) Visual stimuli used in the experiment consisted of three selections from four categories. (b) In different trials participants either saw the images to the left or right of fixation or they received an auditory instruction to imagine a specific image. (c) A classifier trained on the brain responses of different imagined images could be used able to correctly cross-classify which image a person was currently seeing on the screen in the perception condition. Information was higher for the images “preferred” by a visual area, but there was still information, esp. in FBA, about the non-preferred categories (FFA=fusiform face area; OFA=occipital face area; FBA=fusiform body area; EBA=extrastriate body area; PPA=parahippocampal place area; TOS=transverse occipital sulcus)(figure from Cichy et al. 2012).
              

              We conducted a study to directly address the overlap of NCCCs for veridical perception and imagery (Cichy et al. 2012). Participants were positioned inside an MRI scanner and had to perform one of two tasks: Either they were asked to observe visual images presented to the left or right of fixation (Figure 6), or they were asked to imagine visual images in the same locations. Twelve different images from four categories were used: three objects, three visual scenes, three body parts, and three faces. We found that multiple higher-level visual regions had information about the images. Furthermore, it was possible to decode seen visual images using a classifier that had only been trained on imagined visual images. This suggests that imagery and veridical perception share similar neural representations for perceptual contents, at least in high-level visual regions. Please note, however, that the cross-classification between veridical perception and imagery is not perfect. It is currently unclear whether this reflects imperfections in the measurement of brain signals with fMRI, or whether it reflects residual differences in the contents of consciousness between imagery and veridical perception, for example the higher vividness of perception based on external visual stimuli (Perkey 1910).

              
                5.3 Example 3: Perceptual learning

                Another interesting riddle of sensory awareness is perceptual learning (Sagi 2011; see also Lamme this collection). When we are first exposed to a novel class of sensory stimuli our ability to differentiate between nuances is highly limited. When one tastes the first glass of wine, all wines taste the same. But with increased exposure and experience we learn to distinguish even subtle differences between different wines. The interesting question here is whether the sensory information was there all along, and we just failed to notice it, or whether the sensory representation of the wines actually improves (see Dennett 1991). 

                We addressed this question, but with visual grating stimuli instead of different wines (Kahnt et al. 2011). Participants performed two fMRI sessions, where they had to distinguish small differences in the orientation of lines presented on the screen. They had to tell whether they were rotated clockwise or counter-clockwise with respect to a template. During the first fMRI session their ability to distinguish between the line patterns was quite limited. Afterwards we trained them in two sessions outside the MRI scanner on the same line patterns, and their performance continually improved. In a final second fMRI session they had then substantially improved their ability to tell even subtle differences between the orientations apart. But what explains this improvement: Better sensory coding, or better interpretation of the information that was there all along?

                To address this question we first looked into the responses in the early visual cortex to the different line stimuli. As expected from our abovementioned study on orientation coding (Haynes & Rees 2005), it was possible to decode the orientation of the line elements from signals in early visual areas. It is well established that these areas have information about such simple visual features (Bartfeld & Grinvald 1992). However, we found no improvement in our ability to decode the orientation of the stimuli with learning. There is some divergence in the literature with some studies finding effects of learning in early sensory areas (see Sasaki et al. 2010). Other recent findings in monkeys are in line with our findings and do not find improved information coding in sensory areas (e.g., Law & Gold 2009). In our case, it seems as if the sensory representation of orientation remains unchanged and that some other mechanism has to be responsible for the improvement in perceptual discrimination. We found a region in the medial prefrontal cortex where signals followed the learning curve, thus suggesting that the improvement was not so much a question of stimulus coding but of the read-out of information from the sensory system. This study suggests that representation of a feature in an NCCC might not automatically guarantee it enters visual awareness. 

                
                  5.4 Example 4: Invariance in human higher-level visual cortex

                  As mentioned above, one important challenge to the idea that the contents of visual awareness are encoded exclusively late in the visual system is the invariance of responses to low-level visual features (Sáry et al. 1993). We directly investigated the invariance of fMRI responses in the regions lateral occipital (LO) and fusiform gyrus (FUS) of the higher-level object-selective visual cortex (Malach et al. 1995; Grill-Spector et al. 2001). In this study (Cichy et al. 2011) participants viewed objects presented either to the left or the right of the fixation spot (Figure 7). These objects consisted of three different exemplars from four different categories (animals, planes, cars, and chairs). For example, the category “animal” contained images of a frog, a tortoise, and a cow. With these data we were able to explore two different aspects of invariance. First, we wanted to know whether object representations are invariant to changes in spatial location. This is important because a low-level visual representation that focuses exclusively on the distribution of light in the visual field would not be able to generalize from one position to another. So we assessed whether a classifier trained to recognize an object at one position in the visual field would be able to generalize to another position in the visual field. We found that a classifier was able to generalize to a different position, however with reduced accuracy. This indicates that the representations were at least partially invariant with respect to low-level visual features. Next, we investigated whether the representations would generalize from one exemplar to another. This goes even further in testing for the level of abstraction of the representation. A classifier that can generalize not only to a different location but even to a different exemplar (say from a frog to a cow) needs to operate at a higher level of abstraction that is largely independent from low-level visual features. Again we found that the classifier was able to generalize between exemplars of the same category, further supporting the abstraction of representations in the higher visual regions LO and FUS (Figure 7). This makes it again less plausible that the contents of visual awareness are encoded exclusively in the higher-level visual cortex. Encoding in these regions is invariant (or at least tolerant) to low-level feature changes, and thus this level of perceptual experience has to be encoded at a different, presumably lower, level of visual processing.

                  
                    [image: Image - Figure7.jpg]
                    Figure 7: FMRI evidence for invariance of object-representations in the high-level visual regions lateral occipital (LO) and fusiform gyrus (FUS) as compared to early visual cortex (EV; figure from Cichy et al.  2011).
                  

                  
                    5.5 Example 5: No sensory information in PFC

                    A further case where multivariate decoding might inform theories of visual awareness becomes apparent when we confront the question of whether sensory information is distributed throughout the brain when a stimulus crosses the threshold of awareness. The global neuronal workspace theory (e.g., Dehaene & Naccache 2001; see also Baars 2002) posits that sensory signals are made globally available across large-scale brain networks, especially in the prefrontal and parietal cortices, when they reach awareness. An interesting and open question is whether this global availability of sensory information means that the sensory information about a stimulus can be actually decoded from these prefrontal and parietal brain regions to which the information is made available. In theory, one might be able to distinguish between a “streaming model” of global availability, where information is broadcast throughout the brain (e.g., Baars 1988), and which should thus be decodable from multiple brain regions; an alternative would be an “on demand” model of global availability, where sensory signals are only propagated into prefrontal and parietal cortex when selected by attention (e.g., Dehaene & Naccache 2001).

                    We performed three fMRI studies to test this question (Bode et al. 2012; Bode et al. 2013; Hebart et al. 2012). In the first study (Bode et al. 2012), participants were briefly shown images of pianos and chairs that were temporally embedded in scrambled mask stimuli. There were two conditions. In one condition, the timing of visual stimuli was chosen such that the target stimuli were clearly visible. In the other condition, the timing of scrambled masks and targets was such that the targets were effectively rendered invisible. We attempted to decode the sensory information about the presented objects. Under high visibility we were able to decode which image was being shown from fMRI signals in the so-called lateral occipital regions of the human brain, where complex object recognition takes place. Under low visibility, there was no information in these brain regions. This suggests a possible mechanism for explaining why the stimuli failed to reach awareness. Presumably their sensory representations were already cancelled out at the visual processing stages. The “streaming model” mentioned above would mean that sensory information about the object category is distributed into parietal and prefrontal brain regions when the stimulus crosses the threshold of awareness. However, we found no information in the prefrontal cortex—under either high or low visibility (Bode et al. 2012). This finding was repeated in two different studies, one also using objects as stimuli (Bode et al. 2013) and one using drifting motion stimuli (Hebart et al. 2012). In contrast, in animal studies sensory information has been found in the prefrontal cortex (Pasternak & Greenlee 2005). It is currently unclear whether this reflects a species-difference or whether it is due to limitations in the resolution of human neuroimaging techniques.

                    
                      5.6 Example 6: Unconscious processing of preferences

                      It is well known that unattended and even invisible visual stimuli can undergo substantial processing. We investigated whether information about high-level, more interpretative and subjective properties of visual stimuli would also be traceable using decoding techniques. For this we aimed to decode the degree to which preferences for certain visually presented images of cars can be decoded, even when these stimuli were unattended and were not task-relevant (Tusche et al. 2010). 

                      For this experiment we carefully pre-selected our participants, who were self-reporting car-enthusiasts. Then we ensured that we chose stimuli where different participants had maximally-divergent opinions as to which car they preferred. This was necessary in order to de-correlate the classification of the preference from the classification of the specific vehicles. Subjects were divided into two groups. Participants from the first group were presented with the car images in the scanner and had to actively evaluate whether they liked them. The second group was also presented with the car images, but they were distracted from them. They were required to solve a very difficult task that required them to focus their attention elsewhere in the visual field, on fixation. The car stimuli were thus task-irrelevant and presented outside of the attentional focus. This group of subjects could not recall which cars had been shown during the experiment, suggesting that they were indeed not actively deliberating about the cars. After the experiment, participants from both groups were asked to rate how much they would like to buy each car. This served as a gold standard for their preference.

                      We then tried to decode whether individual subjects liked the cars or not. For this, we looked into patterns of brain activity throughout the brain, to see where there might be information regarding preferences. This was done in order to reduce the bias when only looking into pre-specified brain regions. We found that it was possible to decode the preferred cars with 75% accuracy from brain regions far outside the visual system, in the medial prefrontal and in the insular cortex. This was true for the subjects who had been actively deliberating about their preferences for the cars, but also for the participants who been distracted from thinking about them. Presumably, this means that the brain automatically processes the car-images all the way up to the stage of encoding preferences, even in the absence of visual attention. Please note that this finding of preference information in the prefrontal cortex is quite different to that in the previous experiment, where there was no sensory information in PFC. Here, in contrast, there is information in PFC, but (a) not about a sensory property and (b) even for unattended stimuli. Thus, it appears that the informational dividing line between sensory and prefrontal brain regions is not one of awareness, but rather one of the type of information coded.

                    

                  

                

              

            

          

        

      

    

  6 Complicating factors
When searching for the neural correlates of contents of consciousness (NCCCs), there are several complicating factors. One might a priori have an assumption of modularity, meaning that one feature is encoded in one dedicated NCCC area. The idea that such single, maximally-informative regions exist for different features, however, is no more than an assumption. It might turn out that perceptual coding—even for single features—inherently involves processes in multiple brain regions. 
Empirically, it is known that information about objects is distributed across multiple regions. One question is whether one brain region can have information about more than one content (e.g., Haxby et al. 2001; Cichy et al. 2013). In a study inspired by Haxby et al. (2001) we investigated whether object-selective brain regions have information only about objects from their preferred category (Cichy et al. 2013). Participants viewed images from four different categories: objects, visual scenes, body parts, and faces. These categories were chosen because faces, body parts, and places are believed to be processed by highly selective brain regions. We found that a classifier not only contained information about a region’s preferred category: take the example of the face-selective region FFA. It was not only possible to classify faces from this region, it was also possible to classify the difference between other, non-face-related objects, say between a chair and a window. The flipside of this finding that individual regions encode multiple contents is that individual perceptual contents were found in multiple regions. For example, information about faces was also found in supposedly “non-face-selective” brain regions (e.g., in the PPA). This presents a challenge to the idea that each content is represented in one region only.
However, the problem might not be as severe as it first appears. It is actually expected that multiple regions will contain information about each type of content. Different brain regions do not exist in isolation, but are densely causally interconnected (Felleman & van Essen 1991). Furthermore, in the visual pathway, stimulus-related information will reach higher-level brain regions by way of low-level regions. Even if the FFA is the visual region that responds most (albeit not fully) selectively to faces, the presence of a face could also be inferred from the discharge pattern of ganglion cells in the retina. Thus, vertical and horizontal propagation of information is expected. One crucial criterion, which has not received much attention, is whether the information in different regions is redundant or whether it is independent with respect to a person’s perceptual experience. If one hypothetical brain region, say the uniform unicorn area (UUA), is directly responsible for visual experiences of unicorns, it should have more information about a person’s unicorn experiences than any other region. 
The relationship between information in the UUA and other areas will reveal a lot about the nature of representation. If other regions also have information about unicorn experiences, and they receive their information about unicorn experiences via the UUA, then the unicorn-related information in the other regions should be partially redundant to that in the UUA. A classifier should not be able to extract more information about a person’s unicorn experiences by additionally taking other regions into account, over and above the information available from the UUA. If, in contrast, other regions have information that goes beyond that in the UUA that allow the system to improve the classification of unicorn experiences, it is likely that the representation itself is distributed across multiple brain regions. Another way to put it is to distinguish between representational and causal entanglement. A change in neural activity in one region will typically be propagated to any neighbouring regions with which it is connected. This causal entanglement, however, does not directly implicate representational entanglement. Only if it were not possible to find an individual region where neural activity patterns is not fully informative of a specific feature, and if taking into account the joint activity of this region and another region did provide full information, would this provide evidence for representational entanglement. 



7 Putting it together
As outlined above, when attempting to identify the neural correlate of a particular content of conscious experience, it is important to ensure that brain representations in any candidate region fulfil certain mapping requirements. Because we have no direct way of establishing this mapping, multivariate decoding provides a rough approximation that allows the linking of perceptual contents to population brain responses in different regions, and allows us to explore their properties. The data from our lab provide several constraints for a theory of NCCCs. Consistent with previous suggestions (Crick & Koch 1995), the very early stages of processing in V1 are presumably not directly involved in encoding visual experiences. Representations in these regions have more detail than enters consciousness (Haynes & Rees 2005) and might not change their information content during perceptual learning when contents are successively represented with more detail in consciousness (Kahnt et al. 2011). Please note that early regions beyond V1 have to be NCCCs, because higher-level visual areas are invariant to low-level visual features. This has not only been shown in animals (Sáry et al. 1993), but also in humans using classification techniques (e.g., Cichy et al. 2011). This invariance means that high-level regions cannot simultaneously encode the high-level, more abstract phenomenal properties (such as whether a cloud of points resembles a dog or a cat) and the low-level phenomenal properties (colour or brightness sensations). Multiple regions are needed to account for the full multilevel nature of our perceptual experience. While V1 is presumably excluded from visual awareness, early extrastriate regions (such as V2) are likely to be involved, because they still encode low-level visual information. They also appear to filter out sensory information that does not enter awareness, thus again closely matching perceptual experience. For example, V2 and V3 do not encode the orientation of invisible lines, whereas V1 does (Haynes & Rees 2005). Similarly, neural object representations in the lateral occipital complex were wiped out by visual masking that rendered an object stimulus invisible (Bode et al. 2012). The role of extrastriate and higher-level visual areas in visual awareness is further highlighted by the fact that they exhibit a certain convergence of different aspects of awareness. Most notably, they employ a shared code for visual perception and visual imagery (Cichy et al. 2012). 
While extrastriate and higher-level visual regions jointly encode different feature levels of visual awareness, there is evidence that a representation in these regions is not sufficient for visual awareness. For example, our experiments on perceptual learning (Kahnt et al. 2011)—where subjects are unable to access certain details of visual stimuli—show that improved sensory perception is not necessarily associated with improved representation of information in these early areas. The mechanism through which perception of details might be improved lies beyond the sensory encoding stage, in the prefrontal cortex. The mechanism of this improvement is not an improved sensory representation in the prefrontal cortex. Contrary to several experiments on animals (Pasternak & Greenlee 2005), our experiments consistently fail to show any sensory information in the frontal cortex. For example, when a stimulus survives visual masking and is consciously perceived, there is no evidence for the additional distribution of information into the prefrontal cortex (Bode et al. 2012; Bode et al. 2013; Hebart et al. 2012) as would be expected if information is indeed made globally available in the sense of a “streaming model” of a global workspace (Dehaene & Naccache 2001). Even in a more conventional experimental task, based on visual working memory, we were not able to identify sensory information in the prefrontal cortex. Thus, the direct encoding of the visual contents of consciousness, the NCCCs appear to lie in sensory brain regions, at least as far as can be told with the resolution of non-invasive human neuroimaging techniques. On the other hand, our results suggest that the prefrontal cortex is involved in the decision-making—as has been suggested before (Heekeren et al. 2004)—and in learning about sensory contents (Kahnt et al. 2011). Thus, it appears to do so without re-representing or encoding sensory information itself.



Glossary
Neural encoding — The representation of a sensory feature in a population of neurons.
Mental state decoding — Inferring the representational content of a mental state from a brain activation pattern, typically using multivariate pattern classification.
Neural correlate of a content of consciousness — The brain signal that encodes a specific aspect of conscious experience. The brain signal is the carrier, the specific aspect of consciousness constitutes the phenomenal representational content carried (in short, its “phenomenal content”).
Multivariate pattern classification — A mathematical procedure for identifying patterns of brain activity, the labels of which have been previously learned.
Mapping — The assignment of brain activation patterns to the representational content of mental states.
Low-level visual features — Simple dimensions of visual experience that are encoded in early visual brain regions (e.g., contrast, orientation). If consciously represented, they may constitute corresponding simple forms of phenomenal content.
High-level visual features — More complex dimensions of visual experience that are encoded in downstream visual brain regions (e.g., object identity) and that are to some degree independent of the low-level features by which they are defined.
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      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
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