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There is increasing evidence that vestibular signals and the vestibular cortex are
not  only  involved  in  oculomotor  and  postural  control,  but  also  contribute  to
higher-level cognition. Yet, despite the effort that has recently been made in the
field, the exact location of the human vestibular cortex and its implications in vari-
ous perceptional, emotional, and cognitive processes remain debated. Here, we ar-
gue for a vestibular contribution to what is thought to fundamentally underlie hu-
man consciousness, i.e., the bodily self. We will present empirical evidence from
various research fields to support our hypothesis of a vestibular contribution to
aspects of the bodily self, such as basic multisensory integration, body schema,
body ownership, agency, and self-location. We will argue that the vestibular sys-
tem is especially important for global aspects of the self, most crucially for impli-
cit  and  explicit  spatiotemporal  self-location.  Furthermore,  we  propose  a  novel
model on how vestibular signals could not only underlie the perception of the self
but also the perception of others, thereby playing an important role in embodied
social cognition. 
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1 Introduction

There is an increasing interest from both theor-
etical  and  empirical  perspectives  in  how  the
central  nervous  system dynamically  represents
the body and how integrating bodily signals ar-
guably gives rise to a stable sense of self and
self-consciousness  (e.g.,  Blanke &  Metzinger
2009;  Blanke 2012;  Gallagher 2005;  Legrand
2007; Metzinger 2007; Seth 2013). Discussion of
the  “bodily  self”—which  is  thought  to  be
largely  pre-reflective  and  thus  independent  of

higher-level aspects such as language and cogni-
tion—has played an important role  in various
theoretical  views  (e.g.,  Alsmith 2012;  Blanke
2012; Legrand 2007; Metzinger 2003; Metzinger
2013;  Serino et al. 2013).  For example in the
conceptualisation  of  minimal  phenomenal  self-
hood  (MPS), which  constitutes  the  simplest
form of self-consciousness,  Blanke &  Metzinger
(2009) suggested three key features of the MPS:
a globalized form of identification with the body
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as a whole (as opposed to ownership for body
parts), self-location—by which one’s self seems
to occupy a certain volume in space at a given
time—and a first-person perspective that nor-
mally originates from this volume of space.1 In
recent  years,  an  increasing  number  of  studies
has  tried to manipulate  and investigate these
aspects of the minimal self as well as other as-
pects of the bodily self empirically. This chapter
aims to show that  including the oft-neglected
vestibular sense of balance (Macpherson 2011)
into this research might enable us to enrich and
refine such empirical research as well as its the-
oretical models  and thus gain further insights
into the nature of the bodily self. We agree with
Blanke &  Metzinger (2009) that self-identifica-
tion,  self-location,  and  perspective  are  funda-
mental for the sense of a bodily self and argue
that  exactly  these  components  are  most
strongly  influenced  by  the  vestibular  system.
Yet,  we  additionally  want  to  stress  that  the
phenomenological sense of a bodily self  is—at
least in a normal conscious waking state—much
richer and involves various fine-graded and of-
ten fluctuating bodily sensations. We will thus
also describe how the vestibular system might
contribute  to  these  (maybe  not  minimal)  as-
pects of bodily self (e.g., the feeling of agency). 

The aim of this book chapter is thus to
combine findings from human and non-human
animal vestibular research with the newest in-
sights from neuroscientific investigations of the
sensorimotor  foundations  of  the  sense  of  self.
We present several new experimentally testable
hypotheses  out  of  this  convergence,  especially
regarding the relation between vestibular coding
and the sense of self-location. We first describe
the newest advances in the field of experimental
studies of the bodily self (section 2) and give a
short  overview  of  vestibular  processing  and
multisensory  integration  along  the  vestibulo-

1 Jennifer Windt (2010) suggested, based on dream research, an even more
basic form of minimal phenomenal selfhood, which she defined as  a
“sense of immersion or of (unstable) location in a spatiotemporal frame
of reference”, thus not needing a global full-body representation (see also
Metzinger 2013, 2014 for an interesting discussion of this view). We be-
lieve that for this more basic sense of a self especially, the vestibular sys-
tem should be of importance, as a vestibular signal unambiguously tells
us that our self was moving (i.e., change in self-location and perspective)
without an actual sensation from the body (i.e., a specific body location
as it is the case in touch, proprioception, or pain). 

thalamo-cortical  pathways  (section  3).  In  sec-
tion 4, we present several lines of evidence and
hypotheses on how the vestibular system con-
tributes to various bodily experiences thought
to underpin our sense of bodily self.  We con-
clude this section by suggesting that the vesti-
bular system not only contributes to the sense
of self, but may also play a significant role in
self-other interactions and social cognition. 

2 Multisensory mechanisms underlying 
the sense of the body and self

How the body shapes human conscious experi-
ence  is  an  old  and controversial  philosophical
debate. Yet, recent theories converge on the im-
portance of sensory and motor bodily signals for
the experience of a coherent sense of self  and
hence for self-consciousness in general (Berluc-
chi &  Aglioti 2010;  Bermúdez 1998;  Blanke &
Metzinger 2009;  Carruthers 2008;  Gallagher
2000;  Legrand 2007;  Metzinger 2007;  Tsakiris
2010). Even the emergence of self-consciousness
in  infants  has  been  linked to  their  ability  to
progressively  detect  intermodal  congruence
(e.g.,  Bahrick &  Watson 1985;  Filippetti et al.
2013;  Rochat 1998).2 The  assumption  that
multisensory integration of bodily signals under-
pins the sense of a bodily self has opened up—
next to clinical research—a broad and exciting
avenue of experimental investigations in psycho-
logy and cognitive neuroscience as well as inter-
disciplinary projects integrating philosophy and
neuroscience. Experiments in these fields typic-
ally  provided  participants  with  conflicting  in-
formation about certain aspects of their  body
and assessed how it affected implicit and expli-
cit aspects of the body and self. The first anec-
dotal  evidence  of  an  altered  sense  of  self
through  exposure  to  a  multisensory  conflict
dates  back at  least  to the nineteenth century
with the work of Stratton (1899). More system-
atic,  well-controlled  paradigms  from  experi-
mental psychology have gained tremendous in-
fluence since the first description of the rubber
2 It is interesting to note for the frame of this chapter that these au-

thors describe the importance of the detection of coherence of all
self-motion  specific  information  (including  the  vestibular  system),
despite the fact that their experimental setup involved only proprio-
ceptive and visual information (leg movements in a sitting position).
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Figure 1: An overview of brain imaging studies of the rubber hand illusion (Bekrater-Bodmann et al. 2014; Ehrsson et
al. 2004; Limanowski et al. 2014; Tsakiris et al. 2006). Red circles indicate significant brain activation in the comparison
of synchronous visuo-tactile stimulation (illusion condition) to the control asynchronous visuo-tactile stimulation. Green
circles indicate brain areas where the hemodynamic response correlates with the strength of the rubber hand illusion.
Yellow circles indicate areas that significantly correlate with the proprioceptive drift. For the generation of the figure,
MNI  coordinates  were  extracted  from  the  original  studies  and  mapped  onto  a  template  with  caret
(http://www.nitrc.org/projects/caret/ (van Essen et al. 2001)).
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hand illusion seventeen years ago (Botvinick &
Cohen 1998).  Since  then,  different  important
components  underlying  the  bodily  self  have
been  identified,  described,  and  experimentally
modified.  Most  prominently:  self-location—the
feeling of being situated at a single location in
space; first-person perspective—the centeredness
of  the  subjective  multidimensional  and  mul-
timodal experiential space upon one’s own body
(Vogeley &  Fink 2003);  body  ownership—the
sense of ownership of the body (Blanke & Met-
zinger 2009;  Serino et al. 2013); and  agency—
the sense of being the agent of one’s own ac-
tions  (Jeannerod 2006).  In  this  section,  we
briefly describe these components of the bodily
self as well as experimental paradigms that al-
low their systematic manipulation and investig-
ation  of  their  underlying  neural  mechanisms.
Later, in section 4, we will describe how and to
what extent vestibular  signals  might influence
these  components  as  well  as  their  underlying
multisensory integration. 

2.1 Ownership, self-location, and the 
first-person perspective

2.1.1 Body part illusions

Both  ownership  and  self-location3 have  tradi-
tionally  been  investigated  in  healthy  parti-
cipants using the rubber hand illusion paradigm
(Botvinick &  Cohen 1998). Synchronous strok-
ing of a hidden real hand and a seen fake hand
in front of a participant causes the fake hand to
be  self-attributed  (i.e.,  quantifiable  subjective
change in ownership) and the real hand to be
mis-localized towards the rubber hand (i.e., ob-
jectively  quantifiable  change  in  self-location).
During the last ten years, various other correl-
ates of the illusion have been described. For ex-
ample, illusory ownership for a rubber hand is
accompanied by a reduction of the skin temper-
ature of the real hand (Moseley et al. 2008), an
increased skin conductance and activity in pain-
related neural networks in response to a threat
toward  the  rubber  hand  (Armel &

3 This component is in such context usually termed self-location, but a
more accurate formulation is “body part location with respect to the
self” (Blanke & Metzinger 2009; Lenggenhager et al. 2007).

Ramachandran 2003;  Ehrsson et al. 2007), and
increased immune response to histamine applied
on the skin of  the real hand (Barnsley et al.
2011). Several variants of the illusion have been
established using conflicts between tactile and
proprioceptive information,4 between visual and
nociceptive information (Capelari et al. 2009),
between  visual  and  interoceptive  information,
and  between  visual  and  motor  information
(Tsakiris et  al. 2007).  All  these  multisensory
manipulations have in  common that they can
induce predictable changes in the implicit and
explicit sense of a bodily self. Yet, the question
of what components of the bodily self are really
altered during such illusions and how the vari-
ous measures relate to them is still  under de-
bate.  Longo et al. (2008) used a psychometric
analysis of an extended questionnaire presented
after the induction of the rubber hand illusion
to identify three components of the illusion: (1)
ownership,  i.e.,  the  perception  of  the  rubber
hand as part of  oneself;  (2)  location,  i.e.,  the
localization of one’s own hand or of touch ap-
plied to one’s own hand in the position of the
rubber hand; and (3)  sense of agency, i.e., the
experience  of  control  over  the  rubber  hand.
These different components seem also to be re-
flected in differential neural activity as revealed
by recent functional neuroimaging studies.5

Figure  2 summarizes  the  main  brain  re-
gions found to be involved in the rubber hand
illusion  during  functional  magnetic  resonance
imaging  (fMRI) or positron  emission  tomo-
graphy (PET) studies (Bekrater-Bodmann et al.
2014;  Ehrsson et  al. 2004;  Limanowski et  al.
2014;  Tsakiris et al. 2006). The activation pat-
terns depend on how the illusion was quantified.
The pure contrast of the illusion condition (i.e.,
synchronous stroking) to the control condition
reveals a network including the insular, cingu-
late, premotor, and lateral occipital (extrastri-
ate body area) cortex. Areas in which haemody-
namic responses correlate with the strength of
illusory ownership include the premotor cortex

4 Proprioception classically refers to information about the position of body
segments originating from muscle spindles, articular receptors, and Golgi
tendon organs, while interoception refers to information originating from
internal organs such as the heart, gastrointestinal tract, and bladder.

5 The sense of agency has not yet been investigated using neuroima-
ging studies in the context of the rubber hand illusion.
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and  extrastriate  body  area,  whereas  illusory
mis-localization of  the physical  hand (referred
to as “proprioceptive drift”) correlates particu-
larly with responses in the right posterior  in-
sula,  right  frontal  operculum,  and left  middle
frontal gyrus (see figure 1 for the detailed list).
The  fact  that  different  brain  regions  are  in-
volved  in  illusory  ownership  and  mis-localiza-
tion of the physical hand provides further evid-
ence for distinct sub-components underlying the
bodily self. 

2.1.2 Full-body illusions

Several authors claimed that research on body
part illusions is unable to provide insight into
the mechanisms of global aspects of the bodily
self, such as self-identification with a body as a
whole,  self-location  in  space,  and  first-person
perspective  (e.g.,  Blanke &  Metzinger 2009;
Blanke 2012;  Lenggenhager et al. 2007). Thus,
empirical  studies  have  more  recently  adapted

the rubber hand illusion paradigm to a full-body
illusion paradigm  where  the  whole  body  (in-
stead of just a body part) is seen using video-
based techniques and virtual reality. 

Two  main  versions  of  multisensory  illu-
sions targeting more global aspects of the self
have been used (but see also Ehrsson 2007), one
in which the participants saw the back-view of
their  own  body (or  a  fake  body)  in  front  of
them as if it were seen from a third-person per-
spective (full-body illusion [see figure 2, orange
frame];  Lenggenhager et  al. 2007) and one in
which a fake body was seen from a first-person
perspective  (body  swap  illusion  [see  figure  2
green frame; Petkova & Ehrsson 2008]). In both
versions of the illusion, synchronous visuo-tact-
ile stroking of the fake and the real body in-
creased self-identification (i.e., full-body owner-
ship)6 with a virtual or fake body as compared

6 While  these experiments  are targeting illusory full-body owner-
ship,  it  has recently been criticized (Smith 2010;  see also  Met-
zinger 2013) that it has not empirically been shown that it really
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Figure 2: A comparison of brain activity associated with two illusions targeting the manipulation of more global as-
pects of the bodily self, i.e., the full body illusion (Lenggenhager et al. 2007, setup in orange frame) and the body swap
illusion (Petkova & Ehrsson 2008, setup in green frame). In both variants of the illusion, synchronous stroking of one’s
own body and the seen mannequin led to self-identification with the latter (locus of self-identification is indicated in
red colour). Two recent fMRI studies using either the full body illusion (Ionta et al. 2011 in orange circles) or the body
swap illusion (Petkova et al. 2011, in green circles) are compared and plotted. Only areas significantly more activated
during synchronous visuo-tactile stimulation (illusion condition), as compared to control conditions, are shown. For the
generation of the figure, MNI coordinates were extracted from the original studies and mapped onto a template with
caret (http://www.nitrc.org/projects/caret/). Adapted from Serino et al. 2013, Figure 2.
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to  asynchronous  stroking.  Importantly,  it  has
been argued that only the former is associated
with  a  change  in  self-location7 (Aspell et  al.
2009;  Lenggenhager et al. 2007;  Lenggenhager
et al. 2009) and in some cases with a change in
the  direction  of  the  first-person  visuo-spatial
perspective  (Ionta et  al. 2011;  Pfeiffer et  al.
2013). 

A recent psychometric approach identified
three components of  the bodily self  in a full-
body illusion set  up:  bodily self-identification,
space-related  self-perception,  which  is  closely
linked to the feeling of presence in a virtual en-
vironment  (see  section  4.5.1.3),  and  agency
(Dobricki & de la Rosa 2013). Again, these sub-
components  seem  to  rely  on  different  brain
mechanisms. Figure 2 contrasts two recent brain
imaging  studies  using  full-body  illusions  (see
Serino et al. 2013, for a more thorough compar-
ison). While self-identification with a fake body
seen  from a  first-person  perspective  is  associ-
ated with activity in premotor areas (Petkova et
al. 2011), changes in self-location and visuo-spa-
tial perspective are associated with activity in
the temporo-parietal  junction (TPJ) (Ionta et
al. 2011). The TPJ is a region located close to
the parieto-insular vestibular cortex (see section
3.2.3),  suggesting  that  the  vestibular  cortex
might play a role in the experienced self-loca-
tion  and  visuo-spatial  perspective,  as  we  will
elaborate on in the following sections. 

2.2 Agency

Agency, the feeling that one is initiating,
executing, and controlling one’s own volitional
actions, has been described as another key as-
pect of the bodily self and self-other discrimina-
tion (Gallagher 2000;  Jeannerod 2006;  Tsakiris
et al. 2007). Experimental investigations of the
sense  of  agency  started  in  the  1960s  with  a
study by  Nielsen (1963) In this seminal study,

affects the full body (as opposed to just certain body parts). We
agree that this argument is justified and that further experiments
are  needed  to  address  this  issue  (see  also  Lenggenhager et  al.
2009). 

7 Similarly to the rubber hand illusion, changes in self-location and
self-identification  have  been  associated  with  physiological  changes
such as increased pain thresholds, decreased electrodermal response
to pain (Romano et al. 2014), and decreased body temperature (Sa-
lomon et al. 2013).

as well  as in follow-up studies,  a spatial  or a
temporal bias was introduced between a phys-
ical  action (e.g.,  reaching movement toward a
target) and the visual feedback from this action
(Farrer et  al. 2003b;  Fourneret &  Jeannerod
1998). These studies measured the degree of dis-
crepancy for which the movement is still self-at-
tributed. Theories of the sense of agency have
mostly been based on a “forward model,” which
has been defined in a predictive coding frame-
work (Friston 2012).  The forward model  uses
the principle of the efference motor copy, which
is a copy from the motor commands predicting
the sensory consequences of an action. Such ef-
ference  copies  allow  the  brain  to  distinguish
self-generated actions from externally generated
actions  (Wolpert &  Miall 1996).  This  idea  is
supported by a large body of empirical evidence
showing that the sense of agency increases with
increasing  congruence  of  predicted  and actual
sensory input (e.g.,  Farrer et al. 2003a;  Fourn-
eret et al. 2001). Neurophysiological and brain
imaging studies  showed a reduction of  activa-
tion in sensory areas in response to self-gener-
ated,  as  compared  to  externally  generated,
movements  (e.g.,  Gentsch &  Schütz-Bosbach
2011). As well as suppression of activity in spe-
cific sensory areas, agency has also been linked
to  activity  in  a  large  network  including  the
ventral  premotor cortex,  supplementary motor
area, cerebellum, dorsolateral prefrontal cortex,
posterior parietal cortex, posterior superior tem-
poral  sulcus,  angular  gyrus,  and  the  insula
(David et al. 2006; Farrer et al. 2008; Farrer et
al. 2003a). 

While studies on agency have almost exclus-
ively investigated agency for arm and hand move-
ments,  a recent study has addressed “full-body
agency” during locomotion using full-body track-
ing and virtual reality (Kannape et al. 2010). As
the vestibular system is importantly involved in
locomotion, we will argue for a strong implication
of the vestibular system in full-body agency dur-
ing locomotion (see section 4.4).

3 The vestibular system

In this section, we describe the basic mechan-
isms  of  the  peripheral  and  central  vestibular
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system for coding self-motion and self-orienta-
tion, as we believe that these aspects are crucial
bases for a sense of the bodily self. It is, how-
ever, beyond the scope of this paper to provide
a  comprehensive  description  of  the  vestibular
system anatomy and physiology, and the reader
is  referred to recent  review articles  (e.g.,  An-
gelaki & Cullen 2008; Lopez & Blanke 2011).

3.1 Peripheral mechanisms

The peripheral  vestibular  organs  in  the  inner
ear contain sensors detecting three-dimensional
linear motions (two otolith organs) and angular
motions (three semicircular canals). The charac-
teristic of these sensors is that they are inertial
sensors,  a  type  of  accelerometers  and  gyro-
scopes  found  in  inertial  navigation  systems.
When an individual  turns  actively  his  or  her
head, or when the head is moved passively (e.g.,
in a train moving forward), the head accelera-
tion  is  transmitted  to  the  vestibular  organs.
Head movements create inertial forces—due to
the inertia of the otoconia, the small crystals of
calcium carbonate above the otolith organs, and
to the inertia of the endolymphatic fluid in the
semicircular  canals—inducing  an  activation  or
inactivation of the vestibular sensory hair cells.

It  is  important  to  note  here  that  the
neural responses of the vestibular sensory hair
cells  depend on the  direction  of  head move-
ments  with  respect  to  head-centred  inertial
sensors and not with respect to any external
reference. For this reason, the vestibular sys-
tem enables the coding of  absolute head mo-
tion  in  a  head-centred  reference  frame (Ber-
thoz 2000). This way of coding body motion
differs from the motion coding done by other
sensory systems. The coding by the visual, so-
matosensory, and auditory system is ambigu-
ous  because  these  sensory  systems  detect  a
body motion relative to an external reference,
or the motion of an external object with re-
spect to the body. For example, the movement
of an image on the retina can be interpreted
either as a motion of the body with respect to
the visual surrounding, or as a motion of the
visual scene in front of a static observer (e.g.,
Dichgans &  Brandt 1978), leading to an am-

biguous sense of ownership for the movement.
Similarly, if a subject detects changes of pres-
sures applied to his skin (e.g., under his foot
soles),  this  can  be  related  either  to  a  body
movement,  with  respect  to  the  surface  on
which he is standing, or to the movement of
this surface on his skin (Kavounoudias et al.
1998; Lackner & DiZio 2005). Similar observa-
tions have been made in the auditory system
and illusory  sensations  of  body motion  have
been  evoked  by  rotating  sounds  (Väljamäe
2009).  By  contrast,  a  vestibular  signal  is  a
non-ambiguous  neural  signal  that  the  head
moved  or  has  been  moved;  thus  there  is  no
ambiguity  regarding  whether  the  own  body
moved or the environment moved.  It  should,
however, be noted that the vestibular informa-
tion on its own does not distinguish between
passive  or  active movements  of  the subject’s
whole  body  (i.e.,  the  self-motion  associated
with  the  feeling  of  agency;  see  also  section
4.4).8

The otolith organs are not only activated
by head translations, such as those produced by
a train moving forward or by an elevator mov-
ing upward,  but  also  by Earth’s  gravitational
pull. Otolith receptors are sensitive to  gravito-
inertial forces (Angelaki et al. 2004;  Fernández
&  Goldberg 1976) and thus provide the brain
with signals about head orientation with respect
to gravity. Such information is crucial to main-
tain one’s body in a vertical orientation and to
orient oneself in the physical world (Barra et al.
2010).

3.2 Central mechanisms

The  vestibulo-thalamo-cortical  pathways  that
transmit vestibular information from the peri-
pheral  vestibular  organs to the  cortex involve
several structures relaying and processing vesti-
bular sensory signals. We describe below vesti-
bular sensory processing in the vestibular nuclei
complex, thalamus, and cerebral cortex.

8 As we will see below, the neural signal provided by the peripheral vesti-
bular organs does not allow us to distinguish whether the self is (active
motion) or is not (passive motion) the agent of the action. Therefore,
peripheral  vestibular  signals  are  ambiguous  regarding  the  sense  of
agency. Yet, comparisons with motor efference copy in several vestibular
neural structures allow such distinction and provide a sense of agency.
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3.2.1 The vestibular nuclei complex and 
thalamus 

The  eighth  cranial  nerve  transmits  vestibular
signals  from the  vestibular  end organs  to the
vestibular nuclei complex and cerebellum (Bar-
mack 2003).  The vestibular  nuclei  complex  is
located in the brainstem and is the main relay
station for vestibular signals. From the vestibu-
lar nuclei, descending projections to the spinal
cord are responsible for vestibulo-spinal reflexes
and postural control. Ascending projections to
the  oculomotor  nuclei  support  eye  movement
control, while ascending projections to the thal-
amus and subsequently  to  the  neocortex sup-
port the vestibular contribution to higher brain
functions. Vestibular nuclei are also strongly in-
terconnected with several  nuclei  in  the brain-
stem and limbic structures, enabling the control
of autonomic functions and emotion (see section
4.1.3) (Balaban 2004; Taube 2007).

The role of the vestibular nuclei is not lim-
ited  to  a  relay  station  for  vestibular  signals.
Complex sensory processing takes place in vesti-
bular nuclei neurons, involving, for example, the
distinction between active,  self-generated head
movements  and  passive,  externally  imposed
head  movements  (Cullen et  al. 2003;  Roy &
Cullen 2004). As we will argue in section  4.4,
this processing is likely to play a crucial role in
the sense of agency, especially concerning full-
body agency during locomotion. Another char-
acteristic of the vestibular nuclei complex is the
large  extent  of  multisensory  convergence that
occurs within it (Roy & Cullen 2004; Tomlinson
& Robinson 1984; Waespe & Henn 1978), which
leads to the perceptual “disappearance” of ves-
tibular  signals  as  they  are  merged  with  eye
movement,  visual,  tactile,  and  proprioceptive
signals. Because there is “no overt, readily re-
cognizable,  localizable,  conscious  sensation”
from the vestibular organs during active head
movements,  excluding  artificial  passive  move-
ments  and  pathological  rotatory  vertigo,  the
vestibular  sense  has  been  termed  a  “silent
sense” (Day & Fitzpatrick 2005).

Ascending projections from the vestibular
nuclei complex reach the thalamus. These pro-
jections  are  bilateral  and  very  distributed  as

there is no thalamic nucleus specifically dedic-
ated to vestibular  processing,  as  compared to
visual, auditory, or tactile processing.9 Anatom-
ical and electrophysiological studies in rodents
and  primates  identified  vestibular  neurons  in
many  thalamic  nuclei  (review  in  Lopez &
Blanke 2011). Important vestibular projections
have been noted in the ventroposterior complex
of the thalamus, a group of nuclei typically in-
volved  in  somatosensory  processing  (Marlinski
& McCrea 2008a; Meng et al. 2007). Other ves-
tibular projections have been identified in the
ventroanterior  and  ventrolateral  nuclear  com-
plex, intralaminar nuclei, as well as in the lat-
eral and medial geniculate nuclei (Kotchabhakdi
et al. 1980;  Lai et al. 2000;  Meng et al. 2001).
Electrophysiological studies revealed that simil-
arly to vestibular nuclei neurons, thalamic vesti-
bular neurons can distinguish active, self-gener-
ated head movements from passive head move-
ments, showing a convergence of vestibular and
motor signals in the thalamus (Marlinski & Mc-
Crea 2008b).

3.2.2 Vestibular projections to the cortex 

Vestibular processing occurs in several cortical
areas as demonstrated as early as the 1940s in
the cat neocortex and later in the primate neo-
cortex  (reviews  in  Berthoz 1996;  Fukushima
1997;  Grüsser et  al. 1994;  Guldin &  Grüsser
1998; Lopez & Blanke 2011). Figure 3 summar-
izes the main vestibular areas found in the mon-
key and human cerebral cortex. More than ten
vestibular areas have been identified to date.

Electrophysiological and anatomical stud-
ies in animals have revealed important vestibu-
lar projections to a region covering the posterior
parts of the insula and lateral sulcus, an area
referred to as the parieto-insular vestibular cor-
tex (PIVC) (Grüsser et al. 1990a; Guldin et al.
1992; Liu et al. 2011). Other vestibular regions
include the primary somatosensory cortex (the
hand and neck somatosensory representations of
postcentral areas 2 and 3 [Ödkvist et al. 1974;
9 Olfactory processing in the thalamus seems also to be different

from processing  of  the  main senses  as  there  is  no  direct  relay
between  sensory  neurons  and  primary  cortex,  and  olfactory
thalamic  nuclei  have  been  identified  only  recently  (Courtiol &
Wilson 2014). 

Lenggenhager, B. & Lopez, C. (2015). Vestibular Contributions to the Sense of Body, Self, and Others.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 23(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570023 8 | 38

http://www.open-mind.net/
http://dx.doi.org/10.15502/9783958570023
http://www.open-mind.net/papers/@@chapters?nr=23


www.open-mind.net

Schwarz et  al. 1973;  Schwarz &  Fredrickson
1971]);  ventral  and medial  areas of  the intra-
parietal sulcus (Bremmer et al. 2001;  Chen et
al. 2011;  Schlack et  al. 2005);  visual  motion
sensitive area MST (Bremmer et al. 1999; Gu et
al. 2007);  frontal cortex (motor and premotor
cortex and the frontal eye fields [Ebata et al.
2004;  Fukushima et al. 2006]); cingulate cortex
(Guldin et al. 1992) and hippocampus (O’Mara
et al. 1994). These findings indicate that vesti-
bular processing in the animal cortex relies on a
highly distributed cortical network.

A similar conclusion has been drawn from
neuroimaging  studies  conducted  in  humans.
These studies have used fMRI and PET during
caloric and galvanic vestibular stimulation10 and

10 Caloric and galvanic vestibular stimulations are the two most com-
mon techniques to artificially (i.e.,  without any head or full-body
movements)  stimulate  the  vestibular  receptors.  Caloric  vestibular
stimulation was developed by Robert Bárány and consists of irrigat-
ing the auditory canal with warm (e.g., 45°C) or cold (e.g., 20°C)
water (or air), creating convective movements of the endolymphatic
fluid mainly in the horizontal semicircular canals. This stimulation
evokes a vestibular signal close to that produced during head rota-
tions. Galvanic vestibular stimulation consists of the application of a
transcutaneous electrical  current through electrodes  placed on the
skin over the mastoid processes (i.e., behind the ears). Galvanic ves-
tibular stimulation is often applied binaurally, with the anode fixed

revealed  that  the  human  vestibular  cortex
closely matches the vestibular regions found in
animals. Vestibular responses were found in the
insular cortex and parietal operculum as well as
in several regions of the temporo-parietal junc-
tion  (superior  temporal  gyrus,  angular  and
supramarginal  gyri).  Other  vestibular  activa-
tions are located in the primary and secondary
somatosensory cortex, precuneus, cingulate cor-
tex, frontal cortex, and hippocampus (Bense et
al. 2001; Bottini et al. 1994; Bottini et al. 1995;
Dieterich et al. 2003;  Eickhoff et al. 2006;  In-
dovina et al. 2005; Lobel et al. 1998; Suzuki et
al. 2001).

It is of note that the non-human animal
and human vestibular cortex differs from other
sensory  cortices  as  there  is  apparently  no
primary vestibular  cortex;  that  is,  there  is  no
koniocortex  dedicated  to  vestibular  processing
and  containing  only  or  mainly  vestibular  re-
sponding neurons (Grüsser et al. 1994;  Guldin
et al. 1992;  Guldin &  Grüsser 1998), stressing
again the multisensory character of the vestibu-

behind one ear, and the cathode on the opposite side. The cathodal
current increases the firing rate in the ipsilateral vestibular afferents.
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Figure 3: Schematic representation of the main cortical vestibular areas. (A) Main vestibular areas in monkeys are so-
matosensory areas 2v and 3av (3aHv (3a-hand-vestibular region), 3aNv (3a-neck-vestibular region)) in the postcentral
gyrus, frontal area 6v and the periarcuate cortex, parietal area 7, MIP (medial intraparietal area) and VIP (ventral in -
traparietal area), extrastriate area MST (medial superior temporal area), PIVC (parieto-insular vestibular cortex), VPS
(visual posterior sylvian area), and the hippocampus. Major sulci are represented: arcuate sulcus (arcuate), central sul -
cus (central), lateral sulcus (lateral), intraparietal sulcus (intra.), and superior temporal sulcus (sup. temp.). Adapted
from Lopez and Blanke after Sugiuchi et al. (2005). (B) Main vestibular areas in the human brain identified by nonin-
vasive functional neuroimaging techniques. Numbers on the cortex refer to the cytoarchitectonic areas defined by Brod-
mann. Adapted from Lopez & Blanke (2011) after Sugiuchi et al. (2005).
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Figure 4: Anatomical location and functional properties of the parieto-insular vestibular cortex (PIVC). (A) Schem-
atic representation of the macaque brain showing the location of the PIVC. For the purpose of illustration, the lateral
sulcus (lat. s.) is shown unfolded. The macaque PIVC is located in the parietal operculum at the posterior end of the
insula and retroinsular cortex. Modified from  Grüsser et al. (1994). The insert illustrates the location of vestibular
neurons in different regions of the lateral sulcus in a squirrel monkey (Saimiri sciureus). The lateral sulcus is shown un-
folded to visualize the retroinsular cortex (Ri), secondary somatosensory cortex (SII), granular insular cortex (Ig), and
auditory cortex (PA). Vestibular neurons (red dots) were mostly located in Ri and Ig. Adapted from  Guldin et al.
(1992). (B) Vestibular activations found in the human PIVC using meta-analysis of functional neuroimaging data. The
Ri showed a convergence of activations evoked by caloric vestibular stimulation (CVS) of the semicircular canals and
auditory activation of the otolith organs (pink). The parietal operculum (OP2) and posterior insula showed a conver-
gence of activations evoked by CVS and galvanic vestibular stimulation (GVS) of all primary vestibular afferents (yel-
low). Hg (Heschl’s gyrus). Adapted from Lopez et al. (2012). (C) View of the unfolded lateral sulcus of the rhesus mon-
key (Macaca mulatta) showing somatosensory neurons (green dots) in the granular insula, of which some have large so-
matosensory receptive fields covering the whole body (red dots). Ia (agranular insular field); Id (dysgranular insular
field); A1 (first auditory field); Pa (postauditory field); Pi (parainsular field). Modified from Schneider et al. (1993).
(D) Representation of the size of the receptive fields of neurons recorded in somatosensory representations of the body
found in the dorsal part of the insula (ventral somatosensory area) of the titi monkey (Callicebus moloch). Modified
from Coq et al. (2004).
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lar system. All areas processing vestibular sig-
nals are multimodal, integrating visual, tactile,
and proprioceptive signals. The PIVC has been
shown to occupy a key role in the cortical vesti-
bular network and is the only vestibular  area
that is connected to all other vestibular regions
described above. The PIVC also receives signals
from the primary somatosensory cortex, premo-
tor  cortex,  posterior  parietal  cortex,  and  the
cingulate cortex (Grüsser et al. 1994; Guldin et
al. 1992), and it integrates signals from personal
and extrapersonal  spaces.  Given these charac-
teristics,  we believe that the PIVC should be
importantly involved in a coherent representa-
tion of the bodily self and the body embedded
in the world. 

3.2.3 The PIVC as a core, multimodal, 
vestibular cortex

The group of Grüsser was the first to describe
vestibular responses in the monkey PIVC. Vesti-
bular neurons were located in several regions of
the posterior end of the lateral sulcus “in the
upper bank of the lateral sulcus around the pos-
terior end of the insula, sometimes also within
the upper posterior end of the insula [… and]
more  posteriorly  in  the  retroinsular  region  or
more  anteriorly  in  the  parietal  operculum”
(Grüsser et al. 1990a, pp. 543-544;  Grüsser et
al. 1990b; Guldin et al. 1992; Guldin & Grüsser
1998).  Figure  4A illustrates  the  location  of
PIVC in the macaque brain. Recent investiga-
tions of PIVC in rhesus monkeys revealed that
vestibular  neurons were mostly located in the
retroinsular cortex and at the junction between
the secondary somatosensory cortex, retroinsu-
lar cortex, and granular insular cortex (area Ig)
(Chen et al. 2010; Liu et al. 2011).

In humans, functional neuroimaging stud-
ies used caloric and galvanic vestibular stimula-
tion and showed activations in and around the
posterior  insula  and temporo-parietal  junction
(Bense et al. 2001; Bottini et al. 1994; Dieterich
et  al. 2003;  Eickhoff et  al. 2006;  Lobel et  al.
1998; Suzuki et al. 2001). Because these activa-
tions  also  extend  to  the  superior  temporal
gyrus, posterior and anterior insula, and inferior
parietal  lobule,  the  exact  location  of  human

PIVC  is  still  debated  (review  in  Lopez &
Blanke 2011). Recent meta-analyses of vestibu-
lar activations suggest that the core vestibular
cortex is in the parietal operculum, retroinsular
cortex, and/or  posterior  insula (Lopez et  al.
2012; zu Eulenburg et al. 2012) (figure 4B). Of
note, several neuroimaging studies have also im-
plicated  the  anterior  insula  in  vestibular  pro-
cessing (Bense et al. 2001;  Bottini et al. 2001;
Fasold et al. 2002). The insula is crucial for in-
teroceptive  awareness  (Craig 2009)  and  could
provide  the  neural  substrate  for  vestibulo-in-
teroceptive interactions that impact several as-
pects of the bodily self (see section 4.1.3).

4 Vestibular contributions to various 
aspects of the bodily self

The  aim  of  this  section  is  to  describe  several
mechanisms by which the vestibular system might
influence multisensory mechanisms underlying the
bodily self. Again, we would like to stress that the
vestibular system seems of utter importance for
the  most  minimal  aspects  of  self-consciousness
(i.e., the sense of location in a spatial reference
frame) (Windt 2010;  Metzinger 2013,  2014) but
at  the  same  time  also  contributes  to  our  rich
sense of a bodily self in daily life. We will try to
include both aspects in the following section. We
further point out that while some mechanisms of
a vestibular contribution to the sense of a self are
now accepted, others are still largely speculative.
We start by pinpointing the influence of the vesti-
bular system on basic bodily senses such as touch
and pain (section 4.1, which are subjectively ex-
perienced as bodily, i.e., as coming from within
one’s own bodily borders, and thus importantly
contribute to a sense of bodily self. We then out-
line evidence for a vestibular contribution to sev-
eral  previously  identified  and  experimentally
modified components of the multisensory bodily
self: body schema and body image, body owner-
ship, agency, and self-location (sections  4.2–4.5).
On the basis of recent data on self-motion percep-
tion in a social context and on the existence of
shared sensorimotor representations between one’s
own body and others’ bodies, we propose a vesti-
bular contribution to the socially embedded self
(section 4.6). 
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4.1 The sensory self

4.1.1 Touch 

The feeling of touch, as its subjective perception
is  confined within the bodily borders,  is  con-
sidered as crucial  for the feeling of  ownership
and other aspects of the bodily self (Makin et
al. 2008)  and a  loss  of  somatosensory signals
has been associated with a disturbed sense of
the bodily self (e.g., Lenggenhager et al. 2012).
Vestibular processes have been shown to inter-
act with the perception and location of tactile
stimulation.  Clinical  studies  in  brain-damaged
patients  suffering  from  altered  somatosensory
perceptions  showed  transient  improvement  of
somatosensory perception during artificial vesti-
bular stimulation (Kerkhoff et al. 2011;  Vallar
et  al. 1990).  Furthermore,  studies  in  healthy
participants showed that caloric vestibular sim-
ulation can alter conscious perception of touch
(Ferrè et al. 2011), probably due to interfering
effects in  the parietal  operculum (Ferrè et al.
2012). A recent study further suggests that ves-
tibular stimulations not only modify tactile per-
ception thresholds, but also the perceived loca-
tion of stimuli applied to the skin (Ferrè et al.
2013), a finding likely related to a vestibular in-
fluence on the body schema (see section 4.2). 

Behavioural  evidence  of  vestibulo-tactile
interactions is in line with both human and an-
imal physiological and anatomical data. Human
neuroimaging  studies  identified  areas  respond-
ing to tactile, proprioceptive, and caloric vesti-
bular  stimulation  in  the  posterior  insula,
retroinsular  cortex,  and  parietal  operculum
(Bottini et al. 1995; Bottini et al. 2001; Bottini
et  al. 2005;  zu Eulenburg 2013).  Electro-
physiological recordings in monkeys revealed a
vestibulo-somesthetic convergence in most of the
PIVC neurons.  Bimodal  neurons in the PIVC
have large somatosensory receptive fields often
located in the region of the neck and respond to
muscle  pressure,  vibrations,  and rotations  ap-
plied to the neck (Grüsser et al. 1990b). 

To date, the influence of caloric vestibu-
lar  stimulation  on  somatosensory  perception
has been measured at the level of peripheral
body parts only (e.g.,  the capacity to detect

touch applied to the hand, or to locate touch
on the hand), but not on more central body
parts or the entire body. Here, we propose that
vestibular signals are not only important for
sensory  processes  and  awareness  of  body
parts, but even more for  ful l-body awareness.
This hypothesis is supported by findings from
mapping  of  the  posterior  end  of  the  lateral
sulcus in rhesus monkey that revealed neurons
in  the  granular  field  of  the  posterior  insula
with large and bilateral tactile receptive fields
(Schneider et al. 1993). The range of stimuli
used included brushing and stroking the hair,
touching  the  skin,  muscles  and  other  deep
structures,  and  manipulating  the  joints.  Im-
portantly, the authors noted that some neur-
ons  had  receptive  fields  covering  the  entire
surface of the animal body, excluding the face.
As  can  be  seen  in  figure  4C,  those  neurons
(red dots) were located in the most posterior
part  of  the  insula.  Functional  mapping  con-
ducted  in  the  dorsal  part  of  the  insula  in
other monkey species has also identified neur-
ons with large and sometimes bilateral tactile
receptive fields (Coq et al. 2004) (figure 4D).
So far, there is no direct evidence that neur-
ons with full-body receptive fields receive ves-
tibular  inputs,  probably because to date few
electrophysiological  studies  have  directly  in-
vestigated  the  convergence  of  vestibular  and
somatosensory  signals  in  the  lateral  sulcus
(Grüsser et  al. 1990a;  Grüsser et  al. 1990b;
Guldin et al. 1992). We hypothesize that cal-
oric  and  galvanic  vestibular  stimulation,  as
well  as  physical  head  rotations  and  transla-
tions, are likely to interfere with populations
of neurons with whole-body somatosensory re-
ceptive fields and therefore may strongly im-
pact full-body awareness. Indeed, in daily life
the basic sense of touch, especially regarding
large body segments, should be crucial to ex-
perience a bodily self. While full-body tactile
perception hasn’t  been directly assessed dur-
ing vestibular  stimulation,  the  fact  that  cal-
oric  vestibular  stimulation  in  healthy  parti-
cipants as well as acute vestibular dysfunction
can  evoke  the  feeling  of  strangeness  and
numbness for the entire body might point in
this direction (see Lopez 2013, for a review). 
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4.1.2 Pain

Similar  to  touch,  the  experience  of  pain  has
been described as crucial to self-consciousness
and the feeling of an embodied self. In his book
“Still Lives—Narratives of Spinal Cord Injury”
(Cole 2004),  the  neurophysiologist  Jonathan
Cole reports the case of a patient with a spinal
cord lesion who described that “the pain is al-
most comfortable. Almost my friend. I know it
is there, it puts me in contact with my body”
(p.  89).  This  citation  impressively  illustrates
how important the experience of pain might be
in some instances for the sense of a bodily self.
Reciprocal  relations  between  pain  and  the
sense of self are further supported by observa-
tions of altered pain perception and thresholds
during  dissociative  states  of  bodily  self-con-
sciousness, such as depersonalization (Röder et
al. 2007),  dissociative  hypnosis  (Patterson &
Jensen 2003)  and  out of body  experiences‐ ‐
(Green 1968). Similarly, acting in an immersive
virtual environment is also associated with an
increase  in  pain  thresholds  (Hoffman et  al.
2004), a fact that is now increasingly exploited
in virtual reality based pain therapies. This in-
crease  in  pain  threshold  depends  on  the
strength of feeling of presence in the virtual en-
vironment, i.e., the sense of “being there,” loc-
ated  in  the  virtual  environment  (Gutiérrez-
Martínez et al. 2011; see also section  4.5.2.1).
These analgesic effects of immersion and pres-
ence in  virtual  realities  are usually explained
by attentional resource mechanisms (i.e., atten-
tion  is  directed  to  the  virtual  environment
rather  than  the  painful  event).  Yet,  all  de-
scribed instances involve also illusory self-loca-
tion which has shown in full-body illusions to
be  accompanied  by  an  increasing  in  pain
thresholds or altered arousal response to pain-
ful stimuli (Hänsel et al. 2011;  Romano et al.
2014). We thus speculate that analgesic effects
of immersion could also be linked to disinteg-
rated multisensory signals and a related illus-
ory change in self-location and global self-iden-
tification.  Since  the vestibular  system is  cru-
cially involved in self-location (see section 4.5),
we  suggest  that  some  interaction  effects
between altered self-location and pain may be

mediated by the vestibular system.11 Interest-
ingly,  galvanic  and caloric  stimulation,  which
also induce illusory changes in self-location, in-
crease pain thresholds in healthy participants
(Ferrè et al. 2013). This result and several clin-
ical observations suggest an interplay between
vestibular processes, nociceptive processes, and
the sense of the bodily self (André et al. 2001;
Balaban 2011; Gilbert et al. 2014; McGeoch et
al. 2008; Ramachandran et al. 2007). 

These  interactions  are  likely  to  rely  on
multimodal areas in the insular cortex. Intracra-
nial electrical stimulations of the posterior in-
sula  in  conscious  epileptic  patients  revealed
nociceptive representations with a somatotopic
organization (Mazzola et al. 2009; Ostrowsky et
al. 2002).  Functional  neuroimaging  studies  in
healthy  participants  also  demonstrated  that
painful stimuli (usually applied to the hand or
foot)  activate  the  operculo-insular  complex
(Baumgartner et al. 2010; Craig 2009; Kurth et
al. 2010;  Mazzola et al. 2012;  zu Eulenburg et
al. 2013).  It  has  to  be  noted  that  vestibulo-
somesthetic  convergence  may  also  exist  in
thalamic nuclei such as the ventroposterior lat-
eral  nucleus,  known  to  receive  both  somato-
sensory and vestibular signals (Lopez & Blanke
2011).  The parabrachial  nucleus  of  the brain-
stem  is  also  a  region  where  vestibular  and
nociceptive signals converge, as shown by nox-
ious mechanical and thermal cutaneous stimula-
tions (Balaban 2004;  Bester et  al. 1995).  The
parabrachial  nucleus  is  further  strongly  inter-
connected  with  the  insula  and  amygdala  and
may control some autonomic manifestations of
pain (Herbert et al. 1990). Furthermore, a re-
cent  fMRI study revealed an overlap  between
brain activations caused by painful stimuli and
by  artificial  vestibular  stimulation  in  the  an-
terior insula (zu Eulenburg et al. 2013), a struc-
ture that has been proposed to link the homeo-
static evaluation of the current state of the bod-
ily self  to broader social  and motivational as-
pects (Craig 2009). We speculate that such as-
sociation could explain why illusory changes in
11 A recent study investigating pain thresholds during the rubber

hand illusion did not show any change in pain threshold or per-
ception (Mohan et al. 2012), suggesting that pain perception is
linked more to global  aspects of the bodily self,  e.g., self-loca-
tion. 
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self-location  during  vestibular  stimulation  or
during  full-body  illusions  decrease  pain
thresholds. 

4.1.3 Interoception

Visceral signals and their cortical representation
—often  referred  to  as  interoception—are
thought to play a core role in giving rise to a
sense of self (e.g.,  Seth 2013). It has been pro-
posed that visceral signals influence various as-
pects of emotional and cognitive processes (e.g.,
Furman et al. 2013;  Lenggenhager et al. 2013;
Werner et al. 2014; van Elk et al. 2014) and an-
chor the self to the physical body (Maister &
Tsakiris 2014;  Tsakiris et  al. 2011).  For  this
reason, various clinical conditions involving dis-
turbed  self-representation  and  dissociative
states have been related to abnormal interocept-
ive processing (Seth 2013, but see also Michal et
al. 2014 for  an  exception).  Further  evidence
that  interactions  of  exteroceptive  with  intero-
ceptive signals play a role in building a self-rep-
resentation  comes  again  from  research  using
bodily illusions in healthy participants. Two re-
cent studies introduced an interoceptive version
of the rubber hand illusion (Suzuki et al. 2013)
and the full-body illusion (Aspell et al. 2013).
In  both  cases,  a  visual  cue  on  the  body
part/full  body  was  presented  in
synchrony/asynchrony  with  the  participant’s
own heartbeat. Synchrony increased self-identi-
fication  with  the  virtual  hand  or  body  and
modified  the  experience  of  self-location,  thus
suggesting  a  modulation  of  these  components
through interoceptive signals. 

Vestibular  processing  in  the  context  of
such interoceptive bodily illusions has not yet
been studied. Yet, we would like to emphasize
the important  interactions between the vesti-
bular system and the regulation of visceral and
autonomic  functions  at  both  functional  and
neuroanatomical  levels  (review  in  Balaban
1999).  As  mentioned  earlier,  the  coding  of
body orientation in space relies on otolithic in-
formation signaling the head orientation with
respect to gravity. Self-orientation with respect
to gravity also  requires  that  the brain integ-
rates these vestibular signals with information

from gravity receptors in the trunk (e.g., vis-
ceral  signals  from kidneys  and blood vessels)
(Mittelstaedt 1992;  Mittelstaedt 1996;  Vaitl et
al. 2002).  Other  examples  of  interactions
between the vestibular system and autonomic
regulation come from the vestibular control of
blood  pressure,  heart  rate,  and  respiration
(Balaban 1999;  Jauregui-Renaud et  al. 2005;
Yates &  Bronstein 2005).  Blood pressure,  for
instance, needs to be adapted as a function of
body position in space and the vestibular sig-
nals are crucially used to regulate the barore-
flex. Vestibular-mediated symptoms of motion
sickness such as pallor, sweating, nausea, saliv-
ation,  and vomiting are also very well-known
and striking examples of  the vestibular influ-
ence on autonomic functions.

At the anatomical level, there is a large
body of data showing that vestibular informa-
tion  projects  to  several  brain  structures  in-
volved in autonomic regulation, including the
parabrachial  nucleus,  nucleus  of  the  solitary
tract, paraventricular nucleus of the hypothal-
amus,  and  the  central  nucleus  of  the  amyg-
dala. Important research has been conducted
in the monkey and rat parabrachial nucleus as
this  nucleus  contains  neurons  responding  to
natural vestibular stimulation (McCandless &
Balaban 2010) and is involved in the ascend-
ing  pain  pathways  and  cardiovascular  path-
ways to the cortex and amygdala  (Bester et
al. 1995;  Feil &  Herbert 1995;  Herbert et al.
1990;  Jasmin et al. 1997;  Moga et al. 1990).
The parabrachial nucleus receives projections
from several cortical regions, including the in-
sula,  as  well  as  from the  hypothalamus and
amygdala  (Herbert et  al. 1990;  Moga et  al.
1990).  Accordingly,  the  parabrachial  nucleus
should be a crucial brainstem structure for ba-
sic aspects of the self as it is a place of con-
vergence for nociceptive, visceral, and vestibu-
lar signals.

While research on the effects of vestibu-
lar  stimulation  on  interoceptive  awareness  is
still  missing, we propose that artificial vesti-
bular stimulation might be a particularly in-
teresting  means  to  manipulate  interoception
and investigate its influence on the sense of a
bodily self. 
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4.2 Body schema and body image

Here, we propose that vestibular signals are not
only  important  for  the interpretation of  basic
somatosensory (tactile,  nociceptive,  interocept-
ive) processes, but as a consequence also con-
tribute to  body schema and  body image. Body
schema and body image are different types of
models of motor configurations and body metric
properties, including the size and shape of body
segments  (e.g.,  Gallagher 2005;  de Vignemont
2010;  Berlucchi &  Aglioti 2010;  Longo &  Hag-
gard 2010).  Although body schema and body
image are traditionally thought to be of mostly
proprioceptive and visual origin, respectively, a
vestibular  contribution was already postulated
over  a  century  ago  (review  in  Lopez 2013).
Pierre Bonnier (1905) described several cases of
distorted  bodily  perceptions  in  vestibular  pa-
tients and coined the term “aschématie” (mean-
ing a “loss”  of  the  schema)  to  describe these
distorted perceptions of the volume, shape, and
position of the body.  Paul Schilder (1935) also
noted distorted body schema and image in ves-
tibular patients claiming for example that their
“neck swells during dizziness,” “extremities had
become larger,” or “feet seem to elongate.” The
contribution  of  vestibular  signals  to  mental
body representations has been recognized more
recently by Jacques Paillard. He proposed that
“the ubiquitous geotropic constraint [i.e., gravit-
ational  acceleration,  which  is  detected  and
coded  by  vestibular  receptors]  dominates  the
[body-, world-, object- and retina-centered] ref-
erence frames that are used in the visuomotor
control of actions and perceptions, and thereby
becomes  a  crucial  factor  in  linking  them  to-
gether”  (Paillard 1991,  p.  472).  According  to
Paillard, gravity signals would help merge and
give coherence to the various reference frames
underpinning action and perception.

Because humans have evolved under a con-
stant gravitational field, human body represent-
ations are strongly shaped by this physical con-
straint.  In  particular,  grasping  and  reaching
movements  are  constrained  by  gravito-inertial
forces and internal models of gravity (Indovina
et al. 2005; Lacquaniti et al. 2013; McIntyre et
al. 2001).  Thus,  the  body schema and action

potentialities  must  take  into  account  signals
from the otolithic sensors. For example, when a
subject is instructed to reach a target while his
entire body is rotated on a chair, the body rota-
tion generates Coriolis and centrifugal forces de-
viating  the  hand.  Behavioural  studies  demon-
strate that vestibular signals generated during
whole-body  rotations  are  used  to  correct  the
hand trajectory (Guillaud et  al. 2011).  Other
studies demonstrate that vestibular signals con-
tinuously update the body schema during hand
actions.  Bresciani et  al. (2002)  asked  parti-
cipants to point to previously memorized tar-
gets located in front of them (figure 5A). At the
same time,  participants  received  bilateral  gal-
vanic vestibular stimulation, with the anode on
one side and the cathode on the other side. The
data indicate that the hand was systematically
deviated toward the side of anodal stimulation
(figure 5B).  It  is  important  to note that  gal-
vanic vestibular stimulation is known to evoke
illusory body displacements in the frontal plane
and  thus  modifies  the  perceived  self-location
(Fitzpatrick et  al. 2002;  see  also  section  4.5).
One  possible  interpretation  of  the  change  in
hand trajectory during the pointing movement
was  that  it  compensated  for  an  “apparent
change in the spatial relationship between the
target and the hand,” evoked by the vestibular
stimulation (Bresciani et al. 2002). Thus, vesti-
bular signals are used to control the way we act
and interact with objects in the environment.

After having established the contribution
of vestibular signals to hand location and mo-
tion,  we shall  describe the role  of  vestibular
signals in the perception of the body’s metric
properties  (the  perceived  shape  and  size  of
body  segments).  During  parabolic  flights,
known to create temporary weightlessness and
thus mimic a deafferentation of  the otolithic
vestibular  sensors,  Lackner (1992)  reported
cases of participants experiencing a “telescop-
ing motion of the feet down and the head up
internally through the body,”  that  is,  an in-
version of their body orientation. Experiments
conducted on animals born and raised in hy-
pergravity  confirm an influence  of  vestibular
signals on body representations. In these an-
imals, changes in the strength of the gravita-
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tional  field  permanently  disorganized  the so-
matosensory  maps  recorded in  their  primary
somatosensory  cortex  (Zennou-Azogui et  al.
2011).

Experimental  evidence  of  a  vestibular
contribution  to  the  coding  of  body  metric
properties comes from the application of stim-
ulation  in  healthy  participants.  In  a  recent
study, Lopez et al. (2012) showed that caloric
vestibular  stimulation modified the perceived
size of the body during a proprioceptive judg-

ment task (figure 5C). Participants had their
left  hand palm down on a  table.  Above the
left  hand,  there  was  a  digitizing  tablet  on
which participants were instructed to localize
four anatomical targets enabling the calcula-
tion of the perceived width and length of the
left  hand.  While  participants  pointed  re-
peatedly to these targets, they received bilat-
eral  caloric  vestibular  stimulation  known  to
stimulate  the  right  cerebral  hemisphere  in
which  the  left  hand  is  mostly  represented
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Figure 5: Influence of vestibular signals on motor control and perceived body size. (A) Pointing task toward memor-
ized targets. Participants received binaural galvanic vestibular stimulation as soon as they initiated the hand movement
(with eyes closed). (B) Deviation of the hand trajectory towards the anode (modified after Bresciani et al. 2002). (C)
Proprioceptive judgment task used to estimate the perceived size of the left hand. Participants were tested blindfolded
and used a stylus hold in their right hand to localize on a digitizing tablet four anatomical landmarks corresponding to
the left hand under the tablet. (D) Illustration of the perception of an enlarged hand during caloric stimulation activat -
ing the right cerebral hemisphere (modified after Lopez et al. 2012).
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(e.g., warm air in the right ear and cold air in
the left ear). The results showed that in com-
parison to a control stimulation (injection of
air at 37°C in both ears), in the stimulation
condition the left hand appeared significantly
enlarged (figure 5D), showing that vestibular
signals  can  modulate  internal  models  of  the
body.

4.3 Body ownership

Correct self-attribution of body parts and self-
identification  with  the  entire  body  relies  on
successful integration of multisensory informa-
tion as evidenced by various bodily illusions in
healthy participants (e.g.,  Botvinick & Cohen
1998;  Lenggenhager et  al. 2007;  Petkova &
Ehrsson 2008). So far there is only little evid-
ence of a vestibular contribution to the sense
of  body ownership.  Bisiach et  al. (1991)  de-
scribed  a  patient  with  a  lesion  of  the  right
parieto-temporal cortex who suffered from so-
matoparaphrenia, claiming that her left hand
did not belong to her. In this patient, caloric
vestibular  stimulation  transiently  restored
normal ownership for her left hand. Similarly,
Lopez et al. (2010) applied galvanic vestibular
stimulation  to  participants  experiencing  the
rubber hand illusion and showed that the ves-
tibular  stimulation  increased  the  feeling  of
ownership for the fake hand. The authors have
linked such interaction between the vestibular
system,  multisensory  integration,  and  body
ownership  to  overlapping  cortical  areas  in
temporo-parietal  areas  and  the  posterior  in-
sula. No study has so far investigated the ef-
fect  of  vestibular  stimulation  on  full-body
ownership.  Yet,  reports  from  patients  with
acute  vestibular  disturbances  as  well  as  re-
ports from healthy participants during caloric
vestibular stimulation (Lopez 2013; Sang et al.
2006) suggest that full-body ownership might
also be modified by artificial vestibular stimu-
lation  or  vestibular  dysfunctions.  Given  the
importance of  the vestibular system in more
global  aspects  of  the  bodily  self,  we predict
that  vestibular  stimulation  would  influence
ownership even stronger in a full-body illusion
than in a body-part illusion set-up. 

4.4 The acting self: Sense of agency

As  mentioned  earlier,  the  sense  of  being  the
agent of one’s own actions is another crucial as-
pect of the sense of self. Agency relies on sen-
sorimotor mechanisms comparing the motor ef-
ference copy with the sensory feedback from the
movement, and on other cognitive mechanisms
such  as  the  expectation  of  a  self-generated
movement (Cullen 2012; Jeannerod 2003, 2006).
While no study so far has directly investigated
vestibular  mechanisms of  the sense of  agency,
recent progress in this direction has been made
in a study investigating full-body agency during
a goal-directed locomotion task (Kannape et al.
2010). Participants walked toward a target and
observed their motion-tracked walking patterns
applied to a virtual body projected on a large
screen in front of them. Various angular biases
were  introduced  between  their  real  locomotor
trajectory  and  that  projected  on  the  screen.
Comparable to the classical experiments assess-
ing agency for a body part (Fourneret & Jean-
nerod 1998), these authors investigated the dis-
crepancy up to which the motion of the avatar
showed on the screen was still perceived as their
own. During this task, the brain does not only
detect visuo-motor coherence but also vestibulo-
visual coherence, and self-attribution of the seen
movements is thus likely to depend on vestibu-
lar signal processing. In the following we present
an example of neural coding underlying an as-
pect of the sense of agency in several structures
of the vestibulo-thalamo-cortical pathways.

In the vestibular system, peripheral organs
encode in a similar way head motions for which
the subject is or is not the agent.12 Thus, vesti-
bular organs generate similar signals during an
active rotation of the head (i.e., the person is
the agent of the action) or during a passive, ex-
ternally imposed, rotation of the head (i.e., the
person is passively moved while sitting on a ro-
tating  chair).  It  is  important  for  the  central
12 Although the coding of movements by the peripheral vestibular

organs is ambiguous regarding the sense of agency, the coding is
not  ambiguous  regarding  the  sense  of  ownership  for  the  move-
ments  and  self-other  distinction.  Indeed,  because  vestibular
sensors are inertial sensors, vestibular signals are necessarily re-
lated to one’s  own motion and are  the basis  of  the  perception
that I have (been) moved, irrespective of whether the “self” is or
is not the agent of this movement.
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nervous  system  to  establish  whether  afferent
vestibular  signals  are  generated  by  active  or
passive  head  movements,  and this  is  done  at
various levels. Electrophysiological studies con-
ducted in monkeys have revealed that some ves-
tibular  nuclei  neurons  were  silent,  or  had  a
strongly reduced firing rate, during active head
rotations, whereas their firing rate was signific-
antly modulated by passive head rotations. This
indicates  that  vestibular  signals  generated  by
active head rotations were suppressed or attenu-
ated. This suppression of neural responses was
found in the vestibular nuclei complex (Cullen
2011; Roy & Cullen 2004), thalamus (Marlinski
&  McCrea 2008b) and cerebral cortex, for ex-
ample in areas of the intraparietal sulcus (Klam
&  Graf 2003,  2006). Several studies were con-
ducted to determine which signal might induce
such suppression.  Roy & Cullen (2004) sugges-
ted that a motor efference copy was used. They
showed that the suppression occurred “only in
conditions  in  which  the  activation  of  neck
proprioceptors  matched  that  expected  on  the
basis of the neck motor command”, suggesting
that “vestibular signals that arise from self-gen-
erated  head  movements  are  inhibited  by  a
mechanism that compares the internal  predic-
tion of the sensory consequences by the brain to
the actual resultant sensory feedback” (p. 2102).
In conclusion, as early as the first relay along
the vestibulo-thalamo-cortical pathways, neural
mechanisms  have  the  capacity  to  distinguish
between the consequences of active and passive
movements  on  vestibular  sensors.  Given  this
evidence, we suggest an important contribution
of the vestibular system to the sense of agency
in general and to full-body agency in particular.

4.5 The spatial self: Self-location 

4.5.1 Behavioural studies in humans

Self-location is the experience of where “I” am
located in space and is one of the (if not the)
crucial aspects of the bodily self (Blanke 2012).
Recently,  self-location  has  been  systematically
investigated  in  human  behavioural  and
neuroimaging  studies  using  multisensory  con-
flicts  (Ionta et  al. 2011;  Lenggenhager et  al.

2007;  Lenggenhager et al. 2009;  Pfeiffer et al.
2013). While we usually experience ourselves as
located within our own bodily borders at one
single location in space, the sense of self-loca-
tion can be profoundly disturbed in psychiatric
and neurological  conditions,  most  prominently
during  out-of-body  experiences (Bunning &
Blanke 2005). Based on findings in neurological
patients  that  revealed  a  frequent  association
between  vestibular  illusions  (floating  in  the
room, sensation of lightness or levitation) and
out-of-body experiences, Blanke and colleagues
proposed that the illusory disembodied self-loc-
ation was due to a dis-integration of vestibular
signals  with signals from the personal  (tactile
and  proprioceptive  signals)  and  extrapersonal
(visual)  space  (Blanke et  al. 2004;  Blanke &
Mohr 2005;  Blanke 2012;  Lopez et  al. 2008).
The  authors  proposed  that  this  multisensory
disintegration  is  mostly  a  result  of  abnormal
neural activity in the temporo-parietal junction
(Blanke et  al. 2005;  Blanke et  al. 2002;  Hey-
drich & Blanke 2013; Ionta et al. 2011). In this
section, we review experimental data in healthy
participants that may account for the tight link
between vestibular disorders and illusory or sim-
ulated changes in self-location. While the most
direct evidence of such a link comes from the
finding that artificial stimulation of the vestibu-
lar organs induces an illusory change in self-loc-
ation13 (Fitzpatrick & Day 2004;  Fitzpatrick et
al. 2002; Lenggenhager et al. 2008), we focus on
three experimental set-ups that have been used
to alter the experience of self-location in healthy
participants. 

4.5.1.1 Illusory change in self-location 
during full-body illusions

Full-body illusions have increasingly been used
to  study the mechanisms underlying  self-loca-
tion (see  Blanke 2012, for a review). No study
has so far investigated the influence of artificial
vestibular stimulation on such illusions. Never-
theless,  there  is  some  experimental  evidence
suggesting a vestibular involvement in illusory
changes in self-location. While the initial  full-
13 Depending on the stimulation parameters and method, participants

describe various sensations of movements and change in position. 
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body illusion was described in a standing posi-
tion (Lenggenhager et al. 2007), the paradigm
has  later  been  adapted  to  a  lying  position
(Ionta et  al. 2011;  Lenggenhager et  al. 2009;
Pfeiffer et  al. 2013),  mainly  because  the  fre-
quency of spontaneous out-of-body experiences
is higher in lying position than in standing or
sitting positions (Green 1968). It has been spec-
ulated that this influence of the body position
on the sense of embodiment is related to the de-
creased sensitivity of otolithic vestibular recept-
ors and decreased motor and somatosensory sig-
nals in the lying position (Pfeiffer et al. 2013).
We hypothesized that under such conditions of
reduced vestibular (and proprioceptive) inform-
ation, visual capture is enhanced in situations of
multisensory  conflict,  thus  resulting  in  a
stronger change in self-location during the full-
body illusion. So far, the full-body illusion has
not been directly compared in standing versus
lying  positions.  However,  the  application  of
visuo-tactile  conflicts  in  a  lying  position  not
only alters self-location but also evokes sensa-
tions  of  floating  (Ionta et  al. 2011;  Lenggen-
hager et al. 2007). This finding hints toward a
reweighting  of  visual,  tactile,  proprioceptive,
and vestibular information during the illusion,
plausibly in the temporo-parietal junction and
human  PIVC.  In  line  with  this  finding,  the
changes  in  self-location  and  perspective  have
been  associated  with  individual  perceptual
styles of visual-field dependence (Pfeiffer et al.
2013), i.e., weighting of visual as compared to
vestibular information in a subjective visual ver-
tical  task,  suggesting  an individually  different
contribution and weighting of the various senses
for  the  construction  of  the  bodily  self  (for  a
similar finding regarding the rubber hand illu-
sion, see David et al. 2014). 

4.5.1.2 Mental own-body transformation 
and perspective taking

Another  way  to  investigate  bodily  self-con-
sciousness  has  been  to  use  experimental
paradigms requiring participants to put them-
selves “into the shoes” of another individual,
that is to mentally simulate an external self-
location (own-body, egocentric, mental trans-

formation tasks) and a third-person visuo-spa-
tial perspective. Typically, participants are in-
structed to make left-right judgments about a
body, for example, to judge whether this other
shown person is wearing a glove on his right
or left hand (Blanke et al. 2005; Lenggenhager
et  al. 2008;  Parsons 1987;  Schwabe et  al.
2009).  Other  tasks  require  that  participants
adopt the visual perspective of another person
to  decide  whether  a  visual  object  is  to  the
right or left of the other person (David et al.
2006;  Lambrey et  al. 2012;  Vogeley &  Fink
2003). Early studies have shown that the time
needed for  own-body mental  transformations
correlates with the distance or angle between
the participant’s position in the physical space
and  the  position  to  be  simulated  (Parsons
1987).  It  is  largely  admitted  that  own-body
mental transformation is an “embodied” men-
tal simulation that can be influenced by vari-
ous sensorimotor signals from the body (e.g.,
Kessler &  Thomson 2010).  In  line  with  this
view,  various  experiments  demonstrated  that
the  actual  body  position  influences  mental
own-body transformation of body parts (e.g.,
Ionta et  al. 2012).  Importantly,  next  to
proprioceptive and motor mechanisms, visuo-
spatial perspective taking and own-body men-
tal transformation also require the integration
of  vestibular  information  (active  or  passive
body  motion).  Thus,  while  most  of  this  re-
search  looked  at  how  body  parts’  posture
(e.g., of the hand) influences mental own-body
(part)  transformation,  some  recent  research
investigated how mental own-body transform-
ation is influenced by vestibular cues (Candidi
et al. 2013; Dilda et al. 2012; Falconer & Mast
2012;  Lenggenhager et  al. 2008;  van Elk &
Blanke 2014). All these studies revealed that
vestibular signals influence mental (full) own-
body transformation, confirming again the in-
fluence of the vestibular system in the sense of
self-location and perspective taking.14 
14 Visuo-spatial  perspective-taking  has  not  only  been used in  the

field of spatial cognition but also in the field of social cognition.
Perspective  taking is a very crucial  aspect of  human cognition,
which allows us  to understand other people’s actions and emo-
tions. The fact that the vestibular system is importantly involved
in such simulations might further suggest that the vestibular sys -
tem is important for social cognition (see also section 5 and Der-
oualle & Lopez 2014).
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4.5.1.3 Change in self-location and the 
feeling of presence

The development of immersive virtual environ-
ments  has  launched  a  powerful  research  area
where the mechanisms of self-location can be in-
vestigated  and  manipulated  by  the  feeling  of
presence. The term “presence” stems from vir-
tual reality technologies and commonly refers to
the feeling of being immersed (“being there”) in
the virtual environment. Yet, it has been argued
that “presence” also reflects a more general and
basic state of consciousness (Riva et al. 2011).
The study of presence has thus been suggested
to provide useful tools to study (self-)conscious-
ness, with the advantage of precise experimental
control (Sanchez-Vives & Slater 2005). 

Similar to previously mentioned full-body
illusions, a participant who is immersed in a vir-
tual environment receives contradicting multis-
ensory information about his  or  her  self-loca-
tion: while visual information suggests that s/he
is located in a virtual world, proprioceptive in-
formation suggests that s/he is located in the
real world, for example, by indicating a different
body position between the physical  body and
the  avatar.  Furthermore,  and  contrary  to  the
full-body illusion, the visual information often
indicates  that  the  participant  is  moving,
whereas  the  proprioceptive  and  vestibular  in-
formation suggests that he or she is sitting still.
The compelling feeling of presence in virtual en-
vironments  indicates  that  participants  rely
strongly on visual cues. Of note, some authors
have proposed that a sort of bi-location is pos-
sible in such a situation, by which one feels to a
certain degree being localized simultaneously in
both the real and virtual environments (Furlan-
etto et al. 2013;  Wissmath et al. 2011), which
has also been described in a clinical condition
called heautoscopy (e.g.,  Blanke &  Mohr 2005;
Brugger et al. 1994). 

Neuroimaging  studies  in  healthy  parti-
cipants  showed  that  self-identification  with—
and self-localization at—a position of a virtual
avatar seen from a third-person perspective ac-
tivates the left inferior parietal lobe (Corradi-
Dell’acqua et al. 2008; Ganesh et al. 2012). Cor-
roboratively, people who are addicted to video-

games show altered processing in a left posterior
area of the middle temporal gyrus (Kim et al.
2012). These studies converge in their  conclu-
sion that multimodal areas in the temporo-pari-
etal junction are involved in altered self-localiz-
ation  in  virtual  reality.  As  mentioned  before,
the temporo-parietal junction is a main region
for vestibular processing. We thus hypothesize
that the feeling of presence might be mediated
by vestibular signals, which should be directly
tested by assessing whether the feeling of pres-
ence  can be  modified  by caloric  and galvanic
vestibular stimulation. 

4.5.2 Physiological and vestibular 
mechanisms of self-location

4.5.2.1 Categories of cells coding self-
location and self-orientation

Electrophysiological  investigations  in  rodents
have identified three categories of neurons en-
coding specifically where the animal is located,
how its head is oriented, and how the animal
moves in its environment (see Barry & Burgess
2014, for a recent review). These neurons are re-
ferred  to  in  the  literature  as  “place  cells,”
“head-direction cells,” and “grid cells”. In rats,
place cells have been recorded as early as the
1970s  in  the  hippocampus,  and  later  in  the
subiculum  and  entorhinal  cortex  (O’Keefe &
Conway 1978;  O’Keefe &  Dostrovsky 1971;
Poucet et  al. 2003).  The  firing  rate  of  these
neurons increases when the animal is located at
a specific position within the environment. This
activity is strongly modulated by allocentric sig-
nals (visual references in the environment) and
vestibular  signals  (Wiener et  al. 2002).  Place
cells have later been identified in several other
animal species including mice (McHugh et al.
1996), bats (Ulanovsky & Moss 2007), monkeys
(Furuya et al. 2014;  Ludvig et al. 2004;  Mat-
sumura et al. 1999;  Ono et al. 1993) and hu-
mans (Ekstrom et al. 2003;  Miller et al. 2013).
Head-direction cells were first  recorded in the
rat  postsubiculum and  later  in  several  nuclei
constituting  the  Papez  circuit,  such  as  the
dorsal thalamic nucleus and lateral mammillary
nuclei (Taube 2007). They were also found in
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the retrosplenial and entorhinal cortex. Electro-
physiological recordings revealed that head-dir-
ection cells “discharge allocentrically as a func-
tion of  the animal’s directional heading, inde-
pendent  of  the animal’s  location  and ongoing
behavior”  (Taube 2007).  Head-direction  cells
have also been identified in the monkey hippo-
campus (Robertson et  al. 1999).  Finally,  grid
cells have  been  identified  in  the  rat  medial
entorhinal cortex, but also in the pre- and para-
subiculum (Boccara et al. 2010; Sargolini et al.
2006).  Grid cells  fire  for multiple  locations of
the animal within its environment. Altogether,
these  locations  form  a  periodic  pattern,  or
“grid,” spanning the entire surface of the envir-
onment.  More recently,  electrophysiological re-
cordings have shown grid cells in mice (Fyhn et
al. 2008), bats (Yartsev et al. 2011) and mon-
keys  (Killian et  al. 2012),  and even  probable
homologues of  grid cells  in the human hippo-
campus (Doeller et al. 2010; Jacobs et al. 2013).

4.5.2.2 Place cells in the human 
hippocampus and “virtual” self-
location 

We can only speculate about the neural mech-
anisms of place and head-direction specific cod-
ing in the human brain. With the non-invasive
neuroimaging  techniques  available  to  date
(fMRI,  PET,  scalp  electroencephalography
(EEG),  near-infrared  spectroscopy (NIRS)),  it
remains difficult to investigate neural activity of
potential  human  homologues  of  place  cells,
head-direction  cells  and  grid  cells  (for  fMRI
identification  of  grid  cells,  see  Doeller et  al.
2010).  Single-unit  recordings  can  only  be
achieved  during  rather  rare  intracranial  EEG
carried out for presurgical evaluations of drug
refractory epilepsy.

In a seminal intracranial EEG study con-
ducted in  7 epileptic  patients,  Ekstrom et  al.
(2003) identified neurons with place selectivity
in the  hippocampus. Patients were immersed in
a virtual environment and played a taxi driver
computer  game,  picking  up  customers  at  one
location in the virtual town and delivering them
to another location of the town. As illustrated
in figure 6, a neuron recorded in the right hip-

pocampus  had  a  significantly  stronger  firing
rate when the patient was virtually “located” in
the upper left corner than in any other location
of the virtual town, showing its place selectivity.
The authors found that 24% of neurons recor-
ded in the hippocampus displayed a pattern of
place selectivity, a proportion that was signific-
antly larger than in the other brain structures
they explored. Using a very similar procedure in
a virtual environment in patients with intracra-
nial electrodes, a recent study identified prob-
able  grid-like  cells  in  humans  (Jacobs et  al.
2013). They were predominantly located in the
entorhinal cortex and anterior cingulate cortex. 

Interestingly, in both studies,  patients  did
not  physically  move but  moved virtually  using
button presses on a keyboard or a joystick. Never-
theless, the firing rate of these neurons changed
as a function of the “virtual” location of the par-
ticipants within the virtual environment. This ob-
servation indicates that both hippocampal “place
cells” as well as entorhinal and cingulate “grid-
cells” were coding the patient’s location in the
virtual word on the basis of allocentric visual sig-
nals, rather than the patient’s position in the real
world. Although the findings about these proper-
ties of the hippocampus have been mostly inter-
preted in the research field of spatial navigation
and memory Burgess & O’Keefe 2003), we make
a new proposition that they can also shed light on
the neural underpinnings of bodily self-conscious-
ness, especially on how the brain localizes the self
both in everyday life as well as in situations of
multisensory conflicts. 

As  mentioned  earlier,  the  experience  of
self-location  can  be  manipulated  by  creating
conflicts between visual cues about the location
of one’s own body (or an avatar) in the external
word and tactile or other somatosensory signals
(Ehrsson 2007; Lenggenhager et al. 2011; Leng-
genhager et al. 2009; Lenggenhager et al. 2007).
These visuo-tactile conflicts can induce the per-
ception of  being located  closer  to  the avatar.
The recent use of  these visual-tactile  conflicts
during fMRI recordings showed that the appar-
ent  changes  in  self-location  and  visuo-spatial
perspective were related to signal changes in the
temporo-parietal junction, not in the hippocam-
pus (Ionta et al. 2011). It is not clear whether
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hippocampal place cells’ activity can be recor-
ded with the large-scale, non-invasive functional
neuroimaging techniques available. Yet, we pre-
dict  that  visuo-tactile  conflicts,  by  modifying
the experienced self-location, should also modify
the neural activity of place cells and grid cells
and their vestibular modulation (see next sec-
tion), as showed during navigation in immersive
virtual environments (Ekstrom et al. 2003; Jac-
obs et al. 2013). Future research using intracra-
nial EEG recordings in epileptic patients should
endeavour  to  study  directly  the  relation
between place cell activity and the experience of
human self-location in situations of conflicting
multisensory information. 

4.5.2.3 Vestibular signals and place cells

In this section, we emphasize the contribution
of vestibular signals to the neural coding of self-

location  in  the  hippocampus.  As  mentioned
above, the firing rate of place cells is strongly
modulated by allocentric signals, a finding rep-
licated in several studies in rodents (Wiener et
al. 2002).  Vestibular  signals  have  also  been
shown to modulate the firing pattern of the hip-
pocampal place cells, which is necessary when
animals  navigate  in  darkness  (O’Mara et  al.
1994).

Lenggenhager, B. & Lopez, C. (2015). Vestibular Contributions to the Sense of Body, Self, and Others.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 23(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570023 22 | 38

Figure 6: Map illustrating the firing rate of one cell in
the  right  hippocampal  showing  a  pattern  of  place  se-
lectivity. The rectangular map represents the virtual town
explored by the participant using key presses on a key-
board and the red line represents the participant’s tra-
jectory within the virtual town. The nine white boxes in-
dicate the location of buildings in the virtual town (SA,
SB, and SC represent three shops that were “visited” by
the participant).  Colors  from blue to  red  in  the back-
ground represent the firing rate of the hippocampal cell
as a function of the participant’s location in the virtual
town. This neuron displays a significantly higher firing
rate when the participant was located in the left upper
part  of  the virtual  environment (location showed by a
black square). Reproduced from Ekstrom et al. (2003). Figure 7:  Modification of spatial selectivity of ten hip-

pocampal place cells before and after inactivation of the
vestibular apparatus with TTX injection. The colors ran-
ging from yellow to purple represent the increase in firing
rate of the place cells as a function of the location of the
rat in the circular arena. From Stackman et al. (2002).
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For example, Stackman et al. (2002) tem-
porarily  inactivated  the  vestibular  system  of
rats using bilateral transtympanic injections of
tetrodotoxin (TTX). TTX abolishes almost im-
mediately  neural  activity  in  the  vestibular
nerve,  producing a temporary vestibular  deaf-
ferentation, mimicking the situation of patients
with a bilateral vestibular loss.  Figure 7 illus-
trates changes in the firing rate of ten hippo-
campal neurons before and after TTX injection.
Before TTX injection, hippocampal neurons dis-
played  a  typical  pattern  of  place  selectivity
when the animal explored the circular environ-
ment. A major finding of this study was that as
early as one hour after vestibular deafferenta-
tion, the location-specific activity of the same
hippocampal neurons was strongly disturbed. In
particular,  the  vestibular  deafferentation  re-
duced the spatial coherence and spatial inform-
ation content that usually characterize the place
cells. These disorders remained between thirty-
six and seventy-two hours after TTX injection,
despite the fact that the rats continued to ex-
plore their circular environment and had normal
locomotor activity twelve hours after TTX in-
jection.  These results indicate that place cells
are  continuously  integrating  vestibular  signals
to estimate one’s  location within the physical
environment and that vestibular signals strongly
contribute to one of the most important neural
mechanisms of self-location.

The activity of place cells or grid cells has
not been recorded after vestibular deafferenta-
tion  in  humans.  Nevertheless  the  neural  con-
sequences  of  vestibular  lesions  on  place  cells
(Stackman et al. 2002) and head-direction cells
(Stackman &  Taube 1997)  in  animal  models
corroborate the effects of unilateral and bilat-
eral vestibular lesions in humans. Patients with
vestibular disorders may experience spatial dis-
orientation as measured during path completion
tasks (Glasauer et al. 1994) and navigation in
virtual  environments  (Hüfner et  al. 2007;
Péruch et al. 1999). We propose that vestibular
disorders, by disorganizing the firing pattern of
place cells in the human hippocampus (and in
other brain regions containing place cells) may
strongly disturb the sense of  self-location and
thus  the  coherent  sense  of  self,  which  could

eventually even lead to disturbance of the usu-
ally  very  stable  feeling  of  being  located  at  a
single place at a given time (see the strong dis-
organization of the place cells activity in figure
7). Another striking consequence of a bilateral
vestibular  loss  is  the  induced  atrophy  of  the
hippocampus,  whose  volume  is  decreased  by
about seventeen percent (Brandt et al. 2005).
Altogether,  these  data  show  that  one  neural
mechanism  of  bodily  self-location  (place  cells
encoding of the body location in the environ-
ment) strongly relies on vestibular signals.

4.6 The socially embedded self

An important branch of research suggests that
the neural mechanisms that dynamically repres-
ent  multisensory  bodily  signals  not  only  give
rise to a sense of self, but also to the sense of
others. The emerging field of social neuroscience
has investigated both in  animals  and humans
how the perception of another person modifies
neural  activity  in  body-related,  sensorimotor
neural processing and vice versa.15 “Sensorimo-
tor  sharing”  and  related  mechanisms  such  as
emotional contagion, sensorimotor resonance, or
mimicry  are  thought  to  enable  individuals  to
understand others’ emotions, intentions, and ac-
tions and are thus fundamental for our social
functioning.  This  line  of  research  has  evolved
from  an  influential  electrophysiological  study
that  identified  mirror  neurons activated  both
when a monkey was performing a (body part)
action and when observing someone else execut-
ing the same action (Gallese et al. 1996; Rizzo-
latti et al. 1996). A human mirror-neuron-like
system has been suggested based on neuroima-
ging studies that revealed similar brain activa-
tions when acting and when observing the same
action being executed by another person (e.g.,
Rizzolatti & Craighero 2004). Importantly, sim-
ilar mechanisms were found in various sensory
systems  as  further  experiments  have  shown
common neural activity when experiencing and

15 The research on bodily illusions has recently extended to social neur-
oscience by investigating how sensorimotor self-other confusion (dur-
ing the rubber hand, full-body, and enfacement illusions) affects the
perception of another person and, vice versa, how the perception of
another person influences illusory self-other confusion (e.g., Bufalari
et al. 2014; Paladino et al. 2010; Tajadura-Jiménez et al. 2012).
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Figure 8: Experimental setup used to measure the influence of body movement observation on whole body self-motion
perception. (A) Self-motion perception was tested in twenty-one observers seated on a motion platform. Motion stimuli
were yaw rotations lasting for 5s with peak velocity of 0.1°/s, 0.6°/s, 1.1°/s, and 4°/s. (B) Example of a motion profile
consisting of  a  single cycle  sinusoidal  acceleration.  Acceleration,  velocity,  and displacement are  illustrated for  the
highest velocity used at 4°/s. (C) Observers wore a head-mounted display through which 5-s videos were presented, de-
picting their own body, the body of another participant matched for gender and age, or an inanimate object. (D) Dur -
ing congruent trials, the observers and the object depicted in the video were rotated in the same direction (specular
congruency). Reproduced from Lopez et al. (2013).
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observing pain (Lamm et al. 2011, for a recent
meta-analysis),  when  being  touched  and  ob-
serving someone being touched (Keysers et al.
2004),  and  when  inhaling  disgusting  odorants
and observing the face of someone inhaling dis-
gusting odorants (Wicker et al. 2003) 

No human neuroimaging study so far has
investigated brain mechanisms when experien-
cing  a  vestibular  sensation  and  seeing  some-
body experiencing a vestibular sensation (e.g.,
being  passively  moved  in  space).  Yet,  recent
findings from a behavioural  study in humans
suggest  that  the  observation  of  another  per-
son’s whole-body motion might influence vesti-
bular self-motion perception (Lopez et al. 2013;
see  figure 8). In this study, participants were
seated on a whole-body motion platform and
passively  rotated  around  their  main  vertical
body axis. They were asked in a purely vesti-
bular  task  to  indicate  in  which  direction
(clockwise vs. counter-clockwise) they were ro-
tated  while  looking  at  videos  depicting  their
own body, another body, or an object rotating
in  the  same  plane.  The  spatial  congruency
between self-motion and the item displayed in
the video was manipulated by creating congru-
ent trials (specular congruency) and incongru-
ent trials (non-specular congruency). The res-
ults indicated self-motion perception was influ-
enced  by  the  observation  of  videos  showing
passive whole-body motion.  Participants were
faster and more accurate when the motion de-
picted in  the video was congruent  with their
own body motion. This effect depended on the
agent depicted in the video, with significantly
stronger  congruency  effects  for  the  “self”
videos than for the “other” videos, which is in
line with the effects previously reported for the
tactile system (Serino et al. 2009; Serino et al.
2008).  Lopez et  al. (2013)  speculated  on the
existence of a  vestibular mirror neuron system
in the human brain, that is a set of brain re-
gions activated both by vestibular signals and
by observing bodies being displaced. As noted
earlier, vestibular regions show important pat-
terns  of  visuo-vestibular  convergence  in  the
parietal  cortex, which could underlie such ef-
fects  (Bremmer et  al. 2002;  Grüsser et  al.
1990b). 

On the basis of these findings as well as
the data presented above on the importance of
vestibular  processes  in  spatial,  cognitive,  and
social  perspective-taking,  we propose  that  the
vestibular system is not only involved in shap-
ing and building the perception of a bodily self
but is also involved in better understanding and
predicting  another  person’s  (full-body)  action
through sensorimotor resonance (see also Derou-
alle & Lopez 2014). 

5 General conclusion

During the last years, various theories from psy-
chological, neuroscientific, philosophical, and in-
terdisciplinary  perspectives  have  claimed  the
importance of  multisensory signals  and neural
body representations for general theories of self-
consciousness.  Influential  theories  stated  that
very basic, and largely implicit and pre-reflect-
ive bodily processes crucially underlie the self
(Alsmith 2012; e.g.,  Blanke &  Metzinger 2009;
Blanke 2012;  Gallagher 2005;  Legrand 2007).
Such theories fueled experimental investigations
on multisensory integration and its influence on
various aspects of the self. Yet, similarly to Ar-
istotle,  who  claimed  that  “there  is  no  sixth
sense in addition to the five enumerated—sight,
hearing, smell, taste and touch”—this line of re-
search has largely neglected the vestibular sense
of balance.  This is particularly surprising as a
recent  theory  has  claimed  the  importance  of
more global aspects of the bodily self (Blanke &
Metzinger 2009),  most  importantly  probably
the sense of immersion or location in a spati-
otemporal  frame  of  reference  (Windt 2010).
This  process,  as  we  speculated  above,  should
fundamentally rely on vestibular cues, plausibly
among others coded by specific cells in the hip-
pocampus.  The  vestibular  system is  activated
by gravity, the constant force under which we
have evolved, and also during all sorts of passive
and  active  head  and  whole  body  movements.
Moving in an environment is necessary for the
development of a sense of bodily self, and the
vestibular system is thus likely to contribute not
only to the most basic (or minimal) aspects of
the self but also to the different fine-graded im-
plicit and explicit aspects of the experience of
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our bodily self in daily life such as body percep-
tion, body ownership, agency, and self-other dis-
tinction. It is thus not surprising that the vesti-
bular  system  is  intrinsically,  highly  linked  to
other sensory systems such as touch, pain, in-
teroception, and proprioception. While some of
the links between the vestibular system and the
bodily self  are rather well-established and the
underlying  neurophysiological  processes  known
from both  non-human animal  and human re-
search,  several  of  the relations  presented here
are still largely speculative. Yet, we believe that
the  specific  and  testable  hypotheses  we  have
given here—once they are tested and possibly
confirmed  by experimental  studies—might  en-
able us to better describe neural and physiolo-
gical mechanisms underlying minimal phenom-
enal selfhood (Blanke & Metzinger 2009) as well
as  refine  current  models  of  the  multisensory
mechanisms  underlying  the  various  aspects  of
the bodily self. 
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Perspectival Structure and Vestibular 
Processing
A Commentary on Bigna Lenggenhager & Christophe Lopez
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I begin by contrasting a taxonomic approach to the vestibular system with the
structural approach I take in the bulk of this commentary. I provide an analysis of
perspectival structure. Employing that analysis and following the structural ap-
proach, I propose three lines of empirical investigation to selectively manipulate
and measure vestibular processing and perspectival structure. The hope is that
this  serves to  indicate  how interdisciplinary research  on vestibular  processing
might advance our understanding of the structural features of conscious experi-
ence.
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1 Structural vs. taxonomic approaches to 
vestibular processes

Philosophical  work  on  the  senses  has  largely
been  concerned  with  taxonomic  issues:  What
makes an event sensory? Under which sensory
kind should that event be classified? Answering
these  questions  requires  criteria  of  individu-
ation.  These  would  enable  us  to  determine

whether an event is the same as (or different to)
sensory events in general and whether it is the
same as (or different to) sensory events of a spe-
cific kind. A criterion of the first sort would al-
low us to identify vestibular events as sensory
events. This would justify the belief that vesti-
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bular  processes  are  sensory  processes.  A  cri-
terion  of  the  second  sort  would  allow  us  to
identify vestibular sensory events as being of a
specific kind, i.e.,  distinctively vestibular sens-
ory events.  This  would justify the belief  that
there is such a thing as a vestibular sense. Fail-
ing to provide a criterion of the first sort would
force one to classify vestibular events as non-
sensory. But even if one were able to determine
that  vestibular  events  are  sensory,  one  would
still  require  a  criterion  of  the  second sort  to
classify vestibular events as sensory events of a
kind that is distinct from, e.g., visual or haptic
events.

To expand on this last point: as Lenggen-
hager and Lopez so masterfully describe, central
vestibular processes are inherently multisensory,
and as a consequence there is scarcely a part of
our  sensory  and  cognitive  life  that  vestibular
processes leave untouched (see especially §2.2 of
the target article). But then, if vestibular pro-
cesses  are implicated in  so many sensory and
cognitive processes, it may be most accurate to
see vestibular processing as simply a common
part of many processes, rather than as an inde-
pendent sensory system. That is, one may begin
to seriously consider the possibility that vesti-
bular processing does not constitute a form of
sensory processing of its own kind, but rather
constitutes  a  form  of  processing  common  to
various  other  processes  that  are  themselves
sensory. This is, in effect, an issue that arises
from applying a criterion for individuating the
senses that includes the physiology (and neuro-
physiology) of the entire system. One might not
be forced to this conclusion if one used an al-
ternative criterion (Macpherson 2011a,  2011b).
But it seems that each of the criteria commonly
discussed  would  generate  their  own  problems.
For instance, employing a more restrictive cri-
terion that delimited sensory systems according
to  their  peripheral  sensory  organs  would  face
the issue of whether the sensory organs of the
vestibular  system ought to include or  exclude
the so-called “truncal” or “somatic” gravicept-
ors (Mittelstaedt 1992, 1996; Vaitl et al. 2002).
Similar issues would be faced when attempting
to individuate the senses in terms of a distinct-
ive proximal stimulus. Alternatively, one might

individuate the senses by means of certain dis-
tinctive experiences: vision distinctively repres-
ents the brightness, hue, and saturation of col-
ours; audition represents the volume, pitch, and
tone of sounds. The natural candidates for the
vestibular  system  would  be  experiences  that
represent  verticality,  rotation,  and translation.
But whilst it is certain that the vestibular sys-
tem typically contributes to experiences of ver-
ticality, rotation, and translation, these are all
experiences of a kind that can be had through
visual  sensation alone,  or  through a combina-
tion of visual, somatic, and proprioceptive sen-
sation.  Moreover,  although  vertiginous  experi-
ences  are  the  hallmark  of  vestibular  dysfunc-
tion,  these  are  either  experiences  of  rotation,
which brings us back to the aforementioned is-
sue,  or  they  are  more  vaguely  classified  as
pseudo-vertiginous experiences of dizziness that
may have any number of non-vestibular aetiolo-
gies. Suffice to say that it may be surprisingly
difficult  to  find  appropriate criteria  to  justify
the claim that there is such a thing as a  dis-
tinctively vestibular sensory process.

The foregoing characterises what would be
the typical philosophical approach to the vesti-
bular  system,  qua sensory  system.  This  taxo-
nomic  approach captures  certain  philosophical
interests, but it is completely inadequate for the
task  of  bringing  out  the  significance  of  the
scope of  the vestibular system’s influence.  An
alternative,  structural  approach focuses  on the
role  played  by  vestibular  events  in  processes
that exhibit a certain kind of structure, to de-
termine the contribution of those events to that
structure.  Note  that  the  structural  and taxo-
nomic  approaches  are  independent,  insofar  as
they have different epistemic goals. They aim to
further  our  knowledge  in  different  ways.  The
goal of the taxonomic approach is to determine
whether,  and if  so  why,  there is  a distinctive
sensory system of a certain kind. The goal of
the  structural  approach  is  to  determine
whether, and if so how, a certain kind of pro-
cess contributes to a certain kind of structure.
By assuming that one can identify processes as
objects of study without first employing an ex-
haustive  taxonomy,  a  structural  approach can
assume that there are such things as vestibular
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processes  without  any  commitment  to  these
processes  being  wholly  distinct  from  others.
And by tracking the varied yet systematic ef-
fects of vestibular processes, one can determine
whether vestibular processes contribute to a cer-
tain kind of structure, irrespective of, whether
or  not  the  vestibular  system  is  a  distinctive
sensory system. As vestibular processes are im-
plicated  in  so  many and various  sensory  and
cognitive  processes,  the  structural  approach
seems to be the most fruitful in terms of the
amount  we  might  learn.  It  also  seems  more
fruitful in terms of  the kind of knowledge we
might  gain.  For  we may learn  nothing  about
how vestibular processes affect our experiential
life  by learning  that  vestibular  processes  may
not  be,  in  the  final  analysis,  of  a  distinctive
sensory kind. But we will certainly learn some-
thing about how vestibular processes affect our
experiential life by learning that vestibular pro-
cesses contribute to a certain experiential struc-
ture. Accordingly, I leave aside taxonomic issues
in  the  rest  of  this  commentary and focus  on
structural issues. Specifically, I focus on issues
concerning the role of the vestibular system in
providing a particular kind of structure to our
experience of the body and the world, namely a
perspectival structure.

To begin with, we need a preliminary ana-
lysis of experiential phenomena that exhibit per-
spectival structure. I will call these  perspectival
phenomena. In the next section, I offer a rudi-
mentary  analysis  of  perspectival  structure,  the
aim of which is to show that perspectival phe-
nomena are more differentiated than commonly
recognised. In the following three sections, I pro-
pose three lines of empirical investigation. Each
would attempt to selectively  study perspectival
phenomena through measurement and manipula-
tion of  vestibular  processes.  If  the  experiments
proposed yielded interesting results, they would
further our knowledge of how vestibular processes
affect the perspectival structure of our experien-
tial life. Accordingly, the overall aim is to demon-
strate how an analysis of perspectival structure
might fruitfully interface with empirical research
and facilitate understanding of structural features
of conscious experience that would otherwise be
obscured.

2 The differentiation of perspectival 
phenomena

The notion of a subjective perspective (some-
times  described  as a  first-person perspective)
is  at  the  core  of  contemporary  research  on
bodily self-consciousness (Blanke & Metzinger
2009; Metzinger 2003, 2009). However, its role
has often been merely facilitative, serving as a
means  to  study  other components  of  bodily
self-consciousness,  such  as  the  experience  of
bodily  agency,  ownership,  and  self-location
(Ehrsson 2007;  Lenggenhager et  al. 2007;
Petkova et al. 2011a, see Serino et al. 2013 for
review). Consequently, the fact that the very
notion of perspective covers a range of distinct
phenomena has tended to be overlooked.1 Re-
ferring to someone’s perceptual experience as
having a perspectival structure may mean any
one  of  several  distinct  things.  It  may  mean
that there is an origin to her sensory field, rel-
ative  to  which  certain  things  (or  parts  of
things) are perceptible  and perceived from a
particular direction and relative to which cer-
tain other things (or parts of things) are not
perceptible or noticeably occluded.2 Alternat-
ively, it may mean that her experience is or-
ganised  according  to  an  egocentric frame  of
reference centred upon her body, according to
which she experiences locations as situated re-
lative to a particular point at the intersection
of three orthogonal axes. Or it may be that,
thanks to  egomotion,  the flow of her sensory
experience is such that she can see where she
is headed as she moves. Taking  another indi-
vidual’s perspective into account in social in-
teractions can involve either  of  the first  two
forms of perspective (Moll &  Meltzoff 2011).
1 My discussion is restricted to spatial perspectival phenomena; I omit

discussion of the respects in which temporal experience may be per-
spectival. This is mostly for the sake of simplicity. However, there is
good reason to think that we represent time in a manner that is
asymmetrically  dependent  upon  the  ways  in  which  we  represent
space (Boroditsky 2000;  Casasanto & Boroditsky 2008). Addressing
issues concerning the structure of spatial experience first may thus
be prudent. 

2 This notion is intended to capture the idea that there is a point of
“origin” to the so-called line of sight (which is not so much a line as
an angle). This corresponds to perhaps the earliest documented no-
tion  of  perceptual  perspective,  associated  with  what  Euclid  and
Ptolemy respectively called the “visual pyramid” and “visual cone”,
where the apex (origin) of the pyramid or cone is at the eye and the
base at the object (Howard 2012).
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Moreover, the perspective of the subject need
not figure explicitly in the experience for it to
be perspectival; perspective can structure per-
ceptual  experience  implicitly,  by determining
the  way  in  which  objects  are  experienced,
without itself being part of the content of the
experience (Campbell 1994;  Merleau-Ponty
2002; Perry 1993; Zahavi 2005).

We can summarise these remarks by say-
ing that perspectival phenomena in spatial ex-
perience  vary  along three  dimensions.3 First,
perspectival structure can take at least three
forms: 4

• Origin of a sensory field (origin) 
• Centre  of  an  egocentric  frame  of  reference

(egocentric)
• Focal point of a sensory flow field in action

(egomotion) 
3 I do not intend the following to be exhaustive. Moreover, although

all of the perspectival phenomena that I discuss are visual, I do be-
lieve that each of the forms of perspectival structure that I describe
also characterises perspectival experience in haptic perception.

4 The most I intend to claim here is that these forms of perspectival
structure  are  non-identical.  Perhaps the origin  of a given sensory
field, the centre of a given egocentric frame of reference, and the fo-
cal point of a given sensory flow field could occupy the same location
under some description. However, this certainly need not always be
the case. Moreover, each form of perspectival structure will present
the objects of perceptual experience as related to the subject of ex-
perience in different ways, e.g., as only partially visible, as straight
ahead, or as in one’s way. Below I will suggest various ways in which
these might be selectively manipulated, but I do not intend to make
the case that forms of perspectival structure can be dissociated from
one another.

 

Perspectival  phenomena that  exhibit  any
of these forms of perspectival structure can vary
along two further dimensions: the perspective of
a  given perspectival  experience may be either
implicit or  explicit,  and may be attributed to
the  subject  or  to  another  individual.  A  per-
spective is explicit in a perspectival experience if
the subject is consciously aware of the location
of the origin, centre, or focal point in question;
it is implicit if the subject is not.5 The perspect-
ive  in  question  may belong  to  the  subject,  a
first-person perspective, or it may belong to an-
other individual, a third-person perspective.

This  simple  framework  enables  one  to
study perspectival phenomena selectively, rather
than studying an undifferentiated cluster of per-
spectival phenomena simultaneously. In the sec-
tions that follow, I shall suggest a number of
ways in which one might engage in such a se-
lective study of perspectival phenomena by in-

5 When a perspective is explicit, the location of the origin, centre,
or focal point is part of the content of the experience. Any beliefs
that  the subject  has  about  the  location in  question do  not  go
beyond  the  content  of  that  experience  (cf.  Peacocke 1999,  p.
265). The experience may represent the location in question in an
imprecise or wholly incorrect manner; the subject’s beliefs will be
correspondingly  imprecise  or  incorrect.  Implicit  perspectives
structure experience without being part of the content of experi -
ence. I leave it open whether implicit perspectives are neverthe -
less experienced qua structural feature, or whether, for example,
they  are  merely  formal  structures  that  determine  the  ways  in
which things  are  experienced,  without  themselves  being experi-
enced. Issues like this are difficult to evaluate, but for discussion
see Alsmith (2012). 
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tervening upon and registering the activation of
vestibular processes.

3 Perspectival variation in multisensory 
stimulation

One consequence  of  not  distinguishing  between
perspectival phenomena is that the notion of a
first-person perspective  becomes ambiguous. One
can clearly see this ambiguity in descriptions of
the role of  first-person perspective in the multis-
ensory stimulation protocols developed in recent
work on the neuroscience of bodily self-conscious-
ness. These protocols all involve participants be-
ing  touched  on  their  torso  whilst  visually  ob-
serving a body-shape (either the body of another
person, a mannequin, or a virtual body) being
touched on its torso. The protocols differ along
two dimensions: the side of the torso stimulated
and the location of the origin of the participants’
line of sight with respect to the body being ob-
served. In one protocol, the body-swap illusion,
participants are stroked on their chest whilst they
look at a body being stroked on its chest from a
position  located  where  its  head  would  be  (cf.
Ehrsson 2007; see Petkova et al. 2011b;  Petkova
&  Ehrsson 2008;  Petkova et al. 2011a). In an-
other protocol, the full-body illusion, participants
are stroked on their back, whilst they observe a
body from behind being stroked on its back from
a  position  entirely  removed  from  its  location
(Ionta et  al. 2011;  Lenggenhager et  al. 2007;
Pfeiffer et al. 2013). The body-swap illusion pro-
tocol is often distinguished from the full-body il-
lusion protocol as involving first-person perspect-
ive  as  an  independent  variable  (Petkova et  al.
2011a). However, recent work on the full-body il-
lusion has demonstrated effects that the authors
describe  as  changes  in  first-person  perspective
(Pfeiffer et  al. 2014):  Participants  lain  prone
whilst feeling and observing strokes on the back
report experiences of either looking up or down at
the body they observe (Ionta et al. 2011). These
variations in report seem to depend upon the in-
dividual’s  relative  weighting  of  vestibular  and
visual gravitational cues (Pfeiffer et al. 2013).

Admitting  the  differentiation  of  per-
spectival phenomena allows us to make sense of
the differences in use of the term  first-person

perspective. In the terms introduced in the pre-
vious section, the first-person perspective in the
body-swap illusion is an  origin perspective.  It
presents  the  typical  view  of  one’s  own  body
with a line of sight originating in the head. The
first-person perspective in the full-body illusion
is an egocentric perspective. It forms the centre
of an egocentric frame of reference, according to
which the observed body occupies a location in
a particular egocentric direction (up or down).
Distinguishing these forms of  first-person per-
spectival experience reveals that each of these
protocols facilitates manipulation of  a distinct
form of  perspectival  experience.  It  also  sheds
light on the fact that the differences in vestibu-
lar and somatosensory processing between these
forms of perspectival experience have yet to be
compared.

One way of conducting such a comparison
would  be  to  use  virtual  reality  display  tech-
niques to present an individual with two avatars
in series, whilst measuring time-locked vestibu-
lar evoked potentials via scalp EEG. 

Experiment 1: Participants are stroked on
both their  chest  and their  back whilst  supine,
whilst wearing a head-mounted display. In the
meantime, participants observe either the chest
of Avatar 1 being stroked on its chest, presented
from a position  corresponding  to the avatar’s
head, as in the body-swap illusion, or they ob-
serve Avatar 2 being stroked on its back, as in
the full-body illusion. Ideally,  the two avatars
are  presented  in  the same viewing,  such  that
the participant views one avatar and then in a
continuous movement shifts their gaze to view
the other.6

I have claimed that each of the two pro-
tocols  conjoined in  this  proposed experiment
facilitates  manipulation  of  different  forms  of
perspectival experience. If this is correct, then
finding significant  differences  in  vestibularly-
evoked  potentials  between  observation  of
Avatar 1 and Avatar 2 would be a first step in
determining  differences  in  vestibular  pro-
cessing  between  these  forms  of  perspectival
experience.

6 This would be, I take it, as close as practically possible to viewing
the two avatars at the same time, given limitations in the field of
view.
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As noted earlier, there do seem to be indi-
vidual differences in the contents of  egocentric
perspectival experience in the full-body illusion.
This would suggest that some individuals, those
who are more heavily dependent upon vestibu-
lar gravitational cues to determine orientation,
would experience themselves as looking upwards
at Avatar 2. Whereas if the right visual gravita-
tional cues were provided, some individuals may
experience themselves as looking downwards at
Avatar 2 (Ionta et al. 2011; Pfeiffer et al. 2013).
This might allow the investigation of the rela-
tionship  between  egocentric  perspectives  and
egomotion  perspectives,  by  incorporating  a
second phase into a new experiment: 

Experiment 2: Phase 1: experiment 1, de-
scribed above. Phase 2: Participants continue to
be stroked on their back and chest. Participants
fixate  upon  Avatar  2  and  observe  it  rotating
about  a  horizontal  axis,  whilst  being  visibly
stroked on its back and chest. Both reports of
experienced orientation (upward vs. downward)
and  reports  of  experienced  egomotion are
gathered.

Participants  may  experiences  themselves
as rotating around a horizontal axis in just the
way they observe Avatar 2 rotating. Alternat-
ively, they might experience themselves as re-
volving  around  Avatar  2.  In  particular,  what
would be of interest would be the way in which
any resultant illusory experiences of  egomotion
might correlate with experienced egocentric ori-
entation (upward vs. downward). Moreover, in-
dividual  differences  in  experienced  egocentric
orientation might even predict the contents of
experienced  egomotion. This would be a major
step in determining both the relative influence
of vestibular processing on these forms of per-
spectival  experience  and  the  relationship
between these forms of perspectival experience.

4 Perspectival variation in misalignment

In much recent philosophical and neuroscientific
research on self-consciousness,  the experienced
first-person  perspective is  treated  as  a  simple
phenomenon identified with the experienced ori-
gin of an  egocentric  frame of reference centred
upon an individual’s own body (Blanke & Met-

zinger 2009;  Vogeley &  Fink 2003).  But  ego-
centric perspective, despite being an apparently
simple  phenomenon,  is  in  fact  as  potentially
complex  as  the  macroscopic  structure  of  the
body  itself  (Smith 2010).  Human  bodies  are
composed of a number of parts that are to some
degree independently mobile, any of which may
serve to centre a distinct egocentric frame of ref-
erence.  As this  observation is  well  known, we
may  presume  that  theorists  who  treat  ego-
centric perspective as simple are assuming that
locations in these various egocentric frames of
reference are translated into a single,  ultimate
egocentric frame reference which itself determ-
ines egocentric perspectival phenomena. 

However, neurophysiological and neuropsy-
chological  research  on  spatial  representation
suggests  independent  motivation  for  this  ulti-
mate frame being centred upon the head (e.g.,
Avillac et al. 2005) or the torso (e.g.,  Karnath
et al. 1991). By rotating head and torso in op-
posite directions, an egocentric frame of refer-
ence centred upon the head can be misaligned
with another frame centred upon the torso. In
such a “misalignment” situation, a single object
may be “to the right” with respect to the head
and  “to  the  left”  with  respect  to  the  torso
(Longo & Alsmith 2013). Following Christopher
Peacocke’s (1992) description of the phenomen-
ology of experienced direction, one would hypo-
thesise that differences in experienced posture
would  determine  differences  in  egocentric per-
spectival experience.7 One could thus use mis-
7 Peacocke  writes: “The use of a particular set of labeled axes in giving

part of the content of an experience is not a purely notational or conven-
tional matter. The appropriate set of labeled axes captures distinctions
in the phenomenology of experience itself. Looking straight ahead at
Buckingham Palace is one experience. It is another to look at the palace
with one’s face still toward it but with one’s body turned toward a point
on the right. In this second case the palace is experienced as being off to
one side from the direction of straight ahead, even if the view remains
exactly the same as in the first case” (1992, p. 62). Assuming that Pea-
cocke’s prediction is correct, then in this example changes in the ego-
centric perspectival structure of visual experience follow changes in the
orientation of the torso. By misaligning the torso from the direction of
the gaze, one discerns that (in the case as described) the appropriate set
of labelled axes centre upon the torso. In the paradigm described in ex-
periment 3, both head and torso may be misaligned with the individual’s
gaze. This makes it possible to determine the contribution of both head-
and torso-centred frames of reference to the individual’s egocentric per-
spectival experience of a given location. It would then be possible to dis-
cern whether, for the egocentric perspectival experience of a given loca-
tion: (i) the appropriate set of axes centre on the torso; (ii) the axes
centre on the head; (iii) both sets of axes make relative contributions to
the structure of the experience.
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alignment situations to determine the respective
contributions of the head and the torso to the
organisation  of  egocentric perspectival  experi-
ence at a given point in time in the following
experiment: 

Experiment  3:  Standing  with  their  head
and  torso  aligned  or  misaligned  ±15°,  parti-
cipants perform a task that involves either an
explicit or only an  implicit egocentric perspect-
ive (see  below).  The angular  deviation  of  the
stimulus in relation to the head and/or torso is
recorded, such that one would be able assess the
respective contributions of each body-part’s ori-
entation  to  the  participants  egocentric per-
spectival judgments. Participants would receive
either galvanic vestibular stimulation (GVS) or
tendon vibration stimulation to precisely assess
the relative contribution of vestibular processes
to egocentric perspective.

In more detail, the suggestions are these.
For an explicit task, stimuli could be presented
across the entire visual field in regular intervals,
varying  in  distance  and  elevation,  and  parti-
cipants would judge whether a stimulus presen-
ted looks “to their left or to their right”. A po-
tential limitation of the explicit task is that in
using overt left/right judgements, participants’
responses may reflect a stipulated meaning of
these  terms  that  is  independent  of  the  ego-
centric perspectival  structure  of  their  experi-
ence. However, a recent study using a covert at-
tentional cuing paradigm found that rotation of
the torso primes participants to respond more
quickly to visual stimuli appearing on the side
of a computer screen congruent to the direction
of rotation (Grubb &  Reed 2002).8 One could
adapt this paradigm to directly compare the re-
spective influences of head and torso by rotat-
ing the head and/or the torso ±15° relative to
the  screen  where  stimuli  would  be  presented.
Target and cueing visual stimuli would appear
on either congruent or incongruent sides of the
screen and participants would make speed re-
sponses to indicate whether the target appears
to the left or the right on each trial. Again, as
8 It is perhaps worth noting that by “congruent” I intend the more

general sense of the term, as often used in describing the design of
behavioural studies, the meaning of which is equivalent to “in agree-
ment”.  I do not intend the more specific geometrical  sense of the
term, which expresses identity of a certain kind, typically of form.

the angular deviation of the stimulus in relation
to the head and/or torso would be known, one
would  be  able  assess  the  respective  contribu-
tions of each body-part’s orientation to the par-
ticipant’s egocentric perspectival judgments. 

Based on previous work,  I  would expect
participants’ judgements to implicate both their
head  and torso as determining their  egocentric
perspectival  experience  (Alsmith &  Longo
2014).  More  specifically,  I  would  expect  that
both head- and torso-centred reference frames
would influence  explicit and  implicit egocentric
perspectival  phenomena  (Longo &  Alsmith
2013), though the exact weighting will be un-
equal at lateral extremes of each body part and
will differ between individuals (Alsmith et al. in
preparation).  The further  prediction would be
that manipulating vestibular and proprioceptive
processing will modulate felt postural misalign-
ment and thereby systematically influence per-
formance on explicit and implicit egocentric per-
spectival tasks. 

5 Perspectival variation in sensorimotor 
control

Arguably, one of the core structural features of
the  experience  of  intentionally-directed  bodily
movement is the presentation of the agent as the
“perspectival source” of the motion experienced
(Horgan et al. 2003;  Marcel 2006). However,  a
strikingly robust experimental finding is that indi-
viduals will correct for a deviation introduced into
a movement they perform via a bias in visual in-
put,  thereby  ensuring  the  action  they  intend
achieves its goal, whilst nevertheless not reporting
such corrections in their movement (Fourneret &
Jeannerod 1998;  Knoblich &  Kircher 2004;
Slachevsky et al. 2001). Recent developments of
this paradigm have adapted it to test explicit ego-
motion perspectival experience in walking move-
ments,  by  using  a  motion-tracked  avatar,  ob-
served  from the  rear.  Kannape  and  colleagues
found that by introducing a slight bias into the
subject’s visual experience of the trajectory of the
avatar, they could induce subjects to perform ap-
propriate corrective movements in walking to a
target, whilst not noting the discrepancy between
their actual movements and the avatar (Kannape
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et al. 2010). Again, the corrections went largely
unnoticed within a certain range of angular devi-
ation between observed and actual movements.9
Thus, a natural explanation of the pattern of data
is that the mechanisms enabling the experience of
agency present  bodily movements in  a manner
that is far more coarse-grained than the level of
detail  required  to  make  corrective  changes  in
movement  trajectory.  In  short,  egomotion per-
spectives  structure  experiences  of  intentionally-
directed bodily movement. They do so by specify-
ing what we might call coarse-grained phenom-
enal grooves, within which a movement must un-
fold if it is to seem like the movement that the
subject intended or is trying to perform.

Strangely, as yet the potential contributions
of  the  vestibular  system  to  the  structuring  of
agentive experience by egomotion perspective have
not been manipulated. Moreover,  as noted, the
work that has been done in this area has been re-
stricted  to  explicit  egomotion perspectival  phe-
nomena. A natural further step would be to in-
vestigate the nature of  vestibular  processing in
implicit egomotion perspective,  by controlling a
participant’s optic flow in a manner correspond-
ing to the control of the avatar’s motion in Kan-
nape and colleagues’ original study.

Experiment 4: Study 1: Participants view
a textured environment via HMD in which op-
tical flow fields are regulated by their motion-
tracked movements. Study 2: Participants con-
trol  a  motion-tracked,  real-time  avatar  seen
from behind. In both studies,  participants are
tasked with walking directly towards a virtual
target. All the while, they either receive GVS or
sham  stimulation  and  visual  feedback  (optic
flow or avatar position) that is either faithful to
motion-tracking  or  systematically  deviated
left/right  of  the  participant’s  mid-line,  as  a
function of  distance from a point  of  displace-
ment onset. 

Participant trajectory could thus be com-
pared  to  the  dynamics  of  the  flow  field  or
avatar  trajectory  and  participants  could  be

9 The authors write that “deviations of 5◦, 10◦, and 15◦ lead to many
erroneous self-attributions”, found to be “decreasing in magnitude
with increasing angular deviation” (Kannape et al. 2010, p. 1631).
As broached above, one explanation of this pattern would be that
deviations below 15◦ all fall (to a greater or lesser degree) within the
phenomenal groove of the action specified by the task.

asked to rate the degree to which their move-
ments in the virtual environment or the move-
ments of the avatar corresponded to their actual
movements,  as  respective  measures  of  implicit
and explicit  egomotion perspectival experience.
The  question  would  be  whether,  in  trials  in
which GVS is applied, the range of angular de-
viation in which participants would judge that
movements  in  the  virtual  environment  corres-
pond to their own would be equal to or larger
than  trials  in  which  participants  receive  only
biased visual feedback. If the latter occurs, then
in the evocative terms used above, it would sug-
gest that vestibular processes are one of the de-
terminants of the coarseness of the phenomenal
groove specified by an egomotion perspective.

6 Conclusion

I began by contrasting a taxonomic approach to
the  vestibular  system with  the  structural  ap-
proach I have taken in the bulk of  this com-
mentary.  I  then  provided  an  analysis  of  per-
spectival structure. Employing that analysis and
following  the  structural  approach,  I  proposed
three lines of empirical investigation that would
selectively  manipulate  and  measure  vestibular
processing and perspectival structure.

Day & Fitzpatrick (2005) quip that vesti-
bular processes provide a “silent sense” (see also
§2.2.1 of the target article). I suggested at the
outset that (following the taxonomic approach)
it might be surprisingly difficult to say with any
precision why vestibular processing provides a
sense of its very own. But even if it is true, that
is, if the experiments described yield the expec-
ted  results,  they  would  show  that  vestibular
processing is hardly silent. Indeed, each of the
proposed lines of investigation would be a step
towards a better understanding of how vestibu-
lar processes affect myriad forms of perspectival
structure,  all  of  which  would  further  demon-
strate the centrality of vestibular processing to
our experiential  life.  In any case,  my hope is
that these remarks display the extent to which I
have found Lenggenhager and Lopez’s work to
be not only inspirational, but also a rich and
fruitful avenue for interdisciplinary research into
the structural features of conscious experience.
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Vestibular Sense and Perspectival 
Experience
A Reply to Adrian Alsmith

Bigna Lenggenhager & Christophe Lopez

To answer Alsmith’s questions about the existence of a vestibular sense, we out-
line in the first part of our reply why we believe the vestibular sense is a true
“sixth sense”. We argue that vestibular information constitutes distinct sensory
events and that absolute coding of body orientation and motion in the gravity-
centered space is the important unique feature of the vestibular system. In the
last part of our reply, we extend Alsmith’s experimental suggestions to investigate
the vestibular contribution to various perspectival experiences.
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1 Is there a vestibular sense?

The  first  section  of  Alsmith’s  commentary
(“Structural vs. taxonomic approaches to ves-
tibular  processes”) raises  an important ques-
tion: is there a vestibular sense? The enduring
lack of a clear answer to this seemingly simple
question might stem from the old assumption
that there are five and only five senses, all of

which giving rise to a distinct conscious sensa-
tion.  The relatively  late identification  of  the
anatomical  structures  that  code  self-motion
(Wade 2003; Lopez & Blanke 2014) has prob-
ably further contributed to the neglect of the
“vestibular  sense”  in  philosophy and science.
We comment below on two questions raised by
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Alsmith concerning this debate: (1) Are vesti-
bular events sensory events? and (2) Are ves-
tibular events of a specific kind, i.e., distinct
from other sensations? 

(1)  Are  vestibular  events  sensory
events? Several criteria have been proposed to
determine whether an event is  sensory or not
(Macpherson 2011).1 Following this type of ap-
proach,  vestibular  events  can  be  described  as
sensory events because a sensory organ is dedic-
ated  to  coding  gravito-inertial  forces  and  be-
cause there is a phenomenal experience associ-
ated with vestibular stimulation. Indeed, there
are many situations during which passive own-
body motions are characterized by distinct self-
motion sensations. Imagine, for example, a situ-
ation in which we are sitting with eyes closed in
the train and feel the departure, or when we are
standing with eyes opened in a lift and experi-
ence  vertical  movement  of  the  body.  In  such
situations visual and somatosensory signals do
not (or only weakly) contribute, but changes in
vestibular signaling result in the conscious per-
ception of self-motion, i.e., of “being translated
forward” or “being elevated”.

Self-motion perception due to vestibular
stimulation is also testable in the laboratory
using  motorized  motion  platforms  (rotating
chairs or translational platforms, see  Palla &
Lenggenhager 2014):  participants  are  usually
tested sitting on a chair, while non-vestibular
sensory signals are largely excluded by having
the  participant’s  body strapped to  the chair
and stabilized with cushions, by testing parti-
cipants with eyes closed, by reducing auditory
cues via white noise presented in headphones,
and  by  testing  participants  with  gloves  and
long sleeves (e.g.,  Grabherr et al. 2008;  Hart-
mann et al. 2013; Lopez et al. 2013; Macauda
et  al. 2014;  Valko et  al. 2012).  Participants
are able to accurately detect and report self-
motion  and  its  direction,  which  forms  the
basis  for  the  measurement  of  vestibular
thresholds,  which are comparable to auditory
or tactile  thresholds.  When accelerations are
1 For  example,  according  to  Macpherson,  four  main  approaches

to  describe  the  senses  can  be  distinguished:  “the  representa-
tional  criterion,” “the  phenomenal  character  criterion,” “the
proximal  stimulus  criterion,” and  “the  sense-organ  criterion”
(2011).

applied above the threshold of the mechanore-
ceptors in the inner ear (e.g., above 0.6°/s2 for
rotations around the vertical axis),  a motion
sensation  emerges  in  healthy  participants,
which in our opinion is the sensory event cor-
responding to the vestibular sensation “I was
moved”. Such sensory events therefore consti-
tute the basis of what has often been referred
to as the “sixth sense” (Goldberg et al. 2012;
Wade 2003; Berthoz 2000). Further compelling
support  comes  from  patients  with  dysfunc-
tions  of  the  peripheral  vestibular  apparatus
like benign paroxysmal positional vertigo, ves-
tibular neuritis, or Menière’s disease, who ex-
perience  strong  vestibular  sensations  in  the
form of vertigo (Brandt 1999).

We acknowledge,  however,  that  in  situ-
ations where we actively move the head with
eyes opened in space, vestibular signals from
self-motion  do  not  give  rise  to  such distinct
“vestibular”  sensation  of  self-motion.  As  ex-
plained in our target article, in conditions of
active,  self-generated  head movements,  vesti-
bular signals are cancelled or strongly attenu-
ated  in  the  vestibular  nuclei  (Cullen 2011;
Roy & Cullen 2004). This is probably why the
vestibular  sense  has  been  termed  a  “silent
sense”  by  some  authors  (Day &  Fitzpatrick
2005). 

(2) Are vestibular sensory events of
a specific kind, i.e., distinct from other
sensations?  Vestibular sensations are sensa-
tions of own-body rotations, translations, and
orientation (sensation of  whole-body orienta-
tion  with  respect  to  the  vertical)  in  space.
Such sensations may in principle also emerge
from the stimulation of other sensory systems,
such as the visual, somatosensory and audit-
ory systems. Impressively, illusory self-motion
might be evoked by large optic flows, tactile
stimulation under the feet, or displacement of
auditory  stimuli  (Berthoz et  al. 1975;  Di-
chgans et  al. 1972;  Lackner &  DiZio 2001,
2005; Väljamäe 2009). These findings resulted
in Alsmith’s claim that “one may begin to ser-
iously consider the possibility that vestibular
processing does not constitute a form of sens-
ory  processing  of  its  own kind ”(this collec-
tion,  p.  2).  Yet  if  vestibular  processing does
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not constitute a distinct form of sensory per-
ception,  to  which  type  of  sensory processing
does it  belong? Some authors have proposed
that  vestibular  processing  might  relate  to
proprioception (since the vestibular system de-
tects  own body motions)  or  to  exteroception
(since  it  detects  gravitational  acceleration),
but  these  propositions  link  vestibular  pro-
cessing  to  a  function  rather  than  a  sensory
modality. As recently pointed out by  Macph-
erson (2011), “it is not even clear which sens-
ory  modality  equilibrioception  should  be  as-
similated to, if indeed it should be assimilated
to any” (p. 18). 

Although  vestibular,  visual,  and  somes-
thetic signals may all support self-motion per-
ception, this does not mean that the phenom-
enal experience of self-motion based on vesti-
bular signals is similar to the experience based
on visual signals. Actually, they may strongly
differ in their content since, for example, the
vestibular  system  is  specialized  in  coding

high-frequency movements whereas the visual
system is  tuned to low-frequency movements
(see  also  next  paragraph).2 And even at  the
neurophysiological level, vestibular signals in-
teract  very  early  with  visual  and  somato-
sensory signals;  yet  this  does not  mean that
these signals provide the exact same sensation
of  body motion and orientation.  An analogy
might be when we observe a person speaking:
both  auditory  and  visual  signals  from  the
speaker’s lip movements contribute to the ex-
perience  of  listening  to  a  voice;  nevertheless
both signals provide clearly distinct sensations
and  experiences.  We  believe  the  same  holds
for vestibular processing. Vestibular sensations
might  be  clearly  distinct  sensations,  but  in
daily life they are often integrated with other
senses, confounding a pure conscious sensation
(Angelaki &  Cullen 2008;  Angelaki et  al.

2 We add that while visual, auditory, and somatosensory signals about
self-motion can be suppressed, vestibular signals about body acceler-
ations are necessarily present.
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Figure 1: A) Crise de désinvolture (2003) an artwork by Philippe Ramette. Copyrights: © 2015, ProLitteris, Zurich.
All rights are reserved. Reproduction and any other use without permission - except for the individual and private use -
is prohibited. B) Drawing of the “haunting sway”, a “gravity-defying” device that was originally developed in the US in
the 1890s for amusement parks. The visitors had the impression that they were turning with the sway, while actually
the room was turning around them.
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2009).  Vestibular-only  neurons  are  found  in
the vestibular nuclei, which are not influenced
by visual signals or eye movements, suggesting
that vestibular  signals  are not entirely fused
with  other  sensory  signals  (Goldberg et  al.
2012).  Similarly,  intracranial  stimulations  in
epileptic patients have showed that pure vesti-
bular sensations could be evoked during elec-
trical  stimulations  of  the  superior  temporal
cortex and insula  (Penfield 1957;  Kahane et
al. 2003; Mazzola et al. 2014).

2 A unique feature of the vestibular 
system: The representation of absolute 
self-motion and orientation

As mentioned by Alsmith,  the  vestibular  sys-
tem,  unlike  other  sensory  systems,  does  not
code unique properties of sensory inputs such as
loudness or hue. Yet, as already argued in the
target article, the coding of absolute self-motion
in space and self-orientation within gravity-re-
lated space is unique to the vestibular system.
While relative (self-) motion and orientation can
be detected by other sensory systems (e.g., vis-
ion and proprioception), gravity itself is not dir-
ectly visible to these senses.3 Because vestibular
organs  contain  gravito-inertial  sensors,  they
provide a coding of body translations and rota-
tions that  is  independent from external  refer-
ences  (unlike  visual,  auditory,  and  somato-
sensory coding of whole-body motions). For this
reason, vestibular organs code self-motion even
when the eyes are closed, while we are jumping
on a trampoline, or swimming in the sea. 

With  these  properties  the  vestibular  sys-
tem, especially otolith signaling, also gives us the
sensation of an “up” and a “down” by encoding
gravitational acceleration. This process might be
less accessible to consciousness in normal circum-
stances, as gravitational pull is constantly acting
on vestibular mechanoreceptors. However, there
is a large body of data showing that an “internal
model of gravity” (predicting how objects move
in  the  physical  world  according  to  Newton’s
laws;  McIntyre et  al. 2001)  which  is  strongly

3 Of course we can infer about (the direction of) gravity by the relat-
ive motion and specific properties of certain objects; however this
process is much slower, less intuitive, and not always applicable.

based  on  otolith  processing,  shapes  at  a  pre-
conscious level several aspects of the visual per-
ception of objects, body movements, and struc-
ture (e.g., Indovina et al. 2005; Lacquaniti et al.
2013;  Lopez et  al. 2009;  Maffei et  al. 2015;
Yamamoto & Yamamoto 2006). A further illus-
tration of the importance of the coding of body
orientation  in  a  gravity-centered  space  can  be
provided by the “tilted room illusion,” in which
the furniture is aligned in a way that is incon-
gruent with gravitational vertical (see figure 1A
for  an  example  by  the  French  artist  Philippe
Ramette4), which has been used in a moving ver-
sion as well in theme parks (the haunting swing,
a “gravity-defying” ride, see figure  1B). Experi-
ments conducted in this type of tilted environ-
ment have shown that the participant’s percep-
tion and posture are biased by tilted visual refer-
ences, but not totally (Jenkin et al. 2003; Oman
2003). Merleau-Ponty has nicely noted the ambi-
guity of space-coding regarding the experience of
up and  down: “A direction can only exist for a
subject who traces it out, and although a consti-
tuting mind eminently has the power to trace
out all directions in space, in the present mo-
ment  this  mind  has  no  direction  and,  con-
sequently, it has no space, for it is lacking an ac-
tual starting point or an absolute here that could
gradually give a direction to all determinations
of space” (2012). It is interesting to note Mer-
leau-Ponty’s claim that what is missing for the
experience of up and down is an “absolute”. Mer-
leau-Ponty also explains that “[w]e cannot, then,
understand the experience of space through the
consideration of the contents, nor through that
of a pure activity of connecting, and we are con-
fronted by that  ‘third spatiality’ that  we fore-
shadowed above, which is neither the spatiality
of things in space, nor that of spatializing space
[…] We need an ‘absolute within the relative’, a
space that does not skate over appearances, that
is anchored in them and depends upon them”
(2012,  p. 296–297;  our italics).  Although Mer-
leau-Ponty did not mention the vestibular sys-
tem when he described the necessity of a “third
spatiality,” we now know that the otolithic sys-

4 To be precise, Ramette does not glue the furniture to the roof or
wall,  but  rather  “glues”  himself  to the  wall.  His  position is  thus
tilted compared to gravity, not the furniture. 
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tem provides the “absolute within the relative”
he mentions and allows the coding of absolute
self-orientation in space (see also  Berthoz 2011
for a detailed account).

3 Vestibular system and perspectival 
experience—Experimental suggestions

In this last part we elaborate on the experimental
suggestions provided by by Alsmith, proposed in
order  to investigate  more  fine-grained  forms of
perspectival  perceptions  and  their  interaction
with vestibular processes. In the target article we
used the term first-person perspective (mainly in
the context of mental perspective taking and out-
of-body  experiences)  to  refer  to  an  egocentric
visuo-spatial perspective. Alsmith proposes a sub-
division of  this  perspective into three forms of
perspectival  structures:  “origin,”  “egocentric
frame of reference,” and “focal point of sensory
flow (egomotion),” which might be differentially
influenced by vestibular signals. While we do not
necessarily agree on the importance and justifica-
tion of these (and exactly these) components, we
appreciate the experimental suggestions, on which
we will briefly comment below. 

3.1 Experiments I and II: Changing 
vestibular processes through change 
in perspective

A common approach to testing the influence of
the vestibular system on high-level cognition is
to alter vestibular information during a specific
task—for  example  a  perspective-taking  task.
This  can be done either by applying galvanic
(Lenggenhager et al. 2008) or caloric (Falconer
& Mast 2012) vestibular stimulation, by natural
vestibular stimulation (Van Elk & Blanke 2014),
by  exposing  participants  to  microgravity
(Grabherr et  al. 2007), by changing the body
orientation  relative  to  gravity  (Arzy et  al.
2006),  or  by  testing  patients  with  vestibular
dysfunction (Grabherr et al. 2011). What Als-
mith  describes5 in  the  first  two  experiments

5 This  idea  of  measuring  vestibular  processes  during  situations  of
altered sense bodily self evolved in the framework of a grant entitled
“Finding Perspective” awarded to Adrian Alsmith, Christophe Lopez
and colleagues by the Volkswagen Foundation.

mentioned in  the commentary is  the  opposite
approach,  namely  assessing  vestibular  pro-
cessing during specific tasks,  or bodily states,
respectively.6 We believe that this  is  a poten-
tially powerful way to better understand vesti-
bular implication in fine-grained aspects of the
bodily self and their interrelation—both in ex-
perimental work and research in patients with
bodily-self  disturbances  (see  e.g.,  Brugger &
Lenggenhager 2014 for  a  recent  review).  We
would like, however, to point out a few import-
ant issues that should be considered. 

Alsmith  suggests  that  we  measure  time-
locked  vestibular-evoked  potentials  without
stating more precisely what vestibular stimula-
tion to use. However, this is crucial, since there
are various ways to test vestibular processing,
mostly by stimulating a specific part of the ves-
tibular system (see e.g.,  Palla &  Lenggenhager
2014 for  a  recent  review).  One possibility  (in
the  suggested  experiment)  could  be  to  use
sound-induced vestibular-evoked potentials. The
advantage of these is that they can be recorded
in a static condition, unlike other forms of vesti-
bular stimulation (e.g., rotatory evoked cortical
potentials;  Keck 1990), which is important for
the  suggested  full-body  illusion  paradigms.
When designing experiments along these lines,
it is indispensable to know what part of the ves-
tibular system is stimulated by the used tech-
nique. Sound-induced cortical vestibular poten-
tials, for example, represent cortical processing
of otolith signals, mainly from the saccule, thus
coding  preferentially  linear  movements  in  the
vertical plane (i.e., up and down movements in
a standing position). If we rather expect a dif-
ference in coding the front-back movement, as
proposed in Experiments 1 and 2, a vestibular
stimulation of the utricule might be more ap-
propriate (e.g.,  Todd et al. 2014, using evoked-
potentials  by  impulsive  accelerations).  Since
testing all different aspects in all the proposed
conditions is technically impossible, the specific
vestibular  stimulation  should  be  carefully
chosen based on the hypothesis.  Alternatively,

6 A similar approach has been used for other sensory processes such as
the measure of body temperature during the rubber hand illusion
(Lenggenhager et al. 2014; Moseley et al. 2008) or the full-body illu-
sion (Macauda et al. 2014; Salomon et al. 2013).
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more indirect measures could be used to test a
vestibular implication, such as changes in pos-
ture or stability during various experimentally-
induced alterations in the bodily self, e.g., via
dynamic  posturography  using  a  moving  plat-
form, as it is commonly used in clinical settings
(e.g., Ghulyan et al. 2005). 

3.2 Experiment III: Egocentric perspective

In the third proposed experiment, Alsmith con-
siders which (bodily) reference (e.g., eye, head
or body centered) is taken as the egocentric ref-
erence frame. The fact that there are multiple
bodily  frames  of  reference  has  been  nicely
shown in a classical task where ambiguous let-
ters (e.g., d/p) are written on the skin. They
are typically perceived differently depending on
the bodily location on which they are written
(Sekiyama 1991);  and  interestingly  the  per-
spective can be modified by vestibular stimula-
tion (Ferrè et al. 2014). Alsmith here suggests
that there is a need to investigate the egocentric
perspective  both  with  implicit  and  explicit
measures in a situation where body and head7

are misaligned, as previously done to test spa-
tial cognition (Schindler 1997) and heading dir-
ection during passive motion (Ni et al. 2013).
This  is  a  very interesting suggestion;  however
from the experimental description it is not en-
tirely clear how Alsmith thinks that the vesti-
bular contribution should be investigated. Fur-
thermore, his hypothesis only concerns the re-
spective contribution of head and torso position,
but not its vestibular contribution. He suggests
that participants might receive galvanic vestibu-
lar stimulation or tendon vibration stimulation
to investigate “the relative contribution of vesti-
bular processes to egocentric perspective.” One
way to  test  this  could  be  to  align  the  parti-
cipant’s head and torso, but use tendon vibra-
tion or galvanic vestibular stimulation in order
to  induce  an  illusory  tilt  or  turn  the  parti-
cipant’s  head,  thus  inducing  an  illusory  mis-
alignment of the head and body. By doing the
suggested task in such a condition, vestibular or
proprioceptive  contribution  could  be  isolated.

7 Additionally, eye-position could be manipulated. 

While this is theoretically very interesting, there
might  be  practical  difficulties:  vestibular  and
proprioceptive  illusions  are  usually  susceptible
to huge individual differences, and inducing il-
lusory shift of ±15% could be difficult. Further-
more,  in  the  proposed  experiment  that  mis-
aligns  body  and  head  around  the  yaw  axis,
gravitational cues do not differ between the pos-
ition  of  the  torso  and  the  head  in  the  mis-
aligned condition. Adapting the experiment to a
lying-down  position,8 where  body  and  head
would  be  at  different  angles  with  respect  to
gravity, could help investigating the otolithic in-
fluence on perspective. 

4 Conclusion

In  response  to  Alsmith’s  inspiring  theoretical
suggestions, we have argued that there is a true
vestibular  sense,  with  distinct  and  important
properties. We believe and agree with Alsmith
that  better  understanding  its  contribution  to
various aspects of experiential life is crucial and
that  this  might  also  facilitate  taxonomic  and
structural approaches. Alsmith’s response exem-
plifies, in our view, the mutual benefit of an in-
terdisciplinary  dialogue,  as  his  thorough  ana-
lysis of current experimental data, paired with
new theoretical considerations, leads to concrete
experimental suggestions, which might reshape
theoretical considerations depending on the po-
tential results. In our reply we have pointed out
some possible methodological difficulties, some
possible ways to overcome these, and some new
directions  such experimental  work could  take.
In particular, we are optimistic that analyzing
vestibular processing in the brain using electro-
physiological  approaches  will  provide  in  the
near future important new data about the vesti-
bular contribution to the sense of self. We hope
that our reply will help foster interdisciplinary
collaborations that further investigate the role
of the vestibular system in shaping our mind. 

8 Or generally test various body orientations (e.g., as in  Lopez et al.
2009).
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