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Versions of the “predictive brain” hypothesis rank among the most promising and
the most conceptually challenging visions ever to emerge from computational and
cognitive neuroscience. In this paper, I briefly introduce (section 1) the most rad-
ical and comprehensive of these visions—the account of “active inference”, or “ac-
tion-oriented predictive processing” (Clark 2013a), developed by Karl Friston and
colleagues. In section 2, I isolate and discuss four of the framework’s most provoc-
ative claims: (i) that the core flow of information is top-down, not bottom-up, with
the forward flow of sensory information replaced by the forward flow of prediction
error; (ii) that motor control is just more top-down sensory prediction; (iii) that ef-
ference copies, and distinct “controllers”, can be replaced by top-down predic-
tions; and (iv) that cost functions can fruitfully be replaced by predictions. Work-
ing together, these four claims offer a tantalizing glimpse of a new, integrated
framework for understanding perception, action, embodiment, and the nature of
human experience. I end (section 3) by sketching what may be the most important
aspect of the emerging view: its ability to embed the use of fast and frugal solu-
tions (as highlighted by much work in robotics and embodied cognition) within an
over-arching  scheme  that  includes  more  structured,  knowledge-intensive
strategies, combining these fluently and continuously as task and context dictate.
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1 Mind turned upside down?

PP (Predictive processing; for this terminology,
see  Clark 2013a) turns a traditional picture of
perception on its head. According to that once-
standard picture (Marr 1982),  perceptual pro-
cessing is dominated by the forward flow of in-
formation transduced from various sensory re-
ceptors.  As  information  flows  forward,  a  pro-
gressively richer picture of the real-world scene
is  constructed.  The  process  of  construction
would  involve  the  use  of  stored  knowledge  of
various kinds, and the forward flow of informa-
tion was subject to modulation and nuancing by
top-down (mostly attentional)  effects. But the
basic picture remained one in which perception
was fundamentally a process of “bottom-up fea-
ture detection”. In Marr’s theory of vision, de-
tected intensities  (arising from surface  discon-

tinuities and other factors) gave way to detected
features such as blobs, edges, bars, “zero-cross-
ings”, and lines, which in turn gave way to de-
tected  surface  orientations  leading  ultimately
(though this step was always going to be prob-
lematic)  to  a  three-dimensional  model  of  the
visual  scene.  Early perception is  here seen as
building towards a complex world model by a
feedforward  process  of  evidence  accumulation.
Traditional  perceptual  neuroscience  followed
suit,  with  visual  cortex (the  most-studied  ex-
ample)  being  “traditionally  viewed  as  a  hier-
archy of  neural  feature detectors,  with neural
population responses being driven by bottom-up
stimulus features” (Egner et al. 2010, p. 16601).
This was a view of the perceiving brain as pass-
ive and stimulus-driven, taking energetic inputs
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from the senses and turning them into a coher-
ent  percept  by  a  kind  of  step-wise  build-up
moving from the simplest features to the more
complex: from simple intensities up to lines and
edges and on to complex meaningful shapes, ac-
cumulating structure and complexity along the
way in a kind of Lego-block fashion. 

Such views may be contrasted with the in-
creasingly active views that have been pursued
over the past several decades of neuroscientific
and computational research. These views (Bal-
lard 1991; Churchland et al. 1994; Ballard et al.
1997) stress the active search for task-relevant
information  just-in-time  for  use.  In  addition,
huge  industries  of  work  on  intrinsic  neural
activity,  the  “resting  state”  and  the  “default
mode”  (for  a  review,  see  Raichle &  Snyder
2007) have drawn our attention to the ceaseless
buzz of neural activity that takes place even in
the absence of ongoing task-specific stimulation,
suggesting that much of the brain’s work and
activity is in some way ongoing and endogen-
ously generated. 

Predictive processing plausibly represents
the last  and most radical step in this  retreat
from the passive, input-dominated view of the
flow  of  neural  processing.  According  to  this
emerging class  of  models,  naturally  intelligent
systems  (humans  and  other  animals)  do  not
passively  await  sensory  stimulation.  Instead,
they are constantly active, trying to predict the
streams of sensory stimulation before they ar-
rive.  Before  an  “input”  arrives  on  the  scene,
these  pro-active  cognitive  systems are  already
busy predicting its most probable shape and im-
plications. Systems like this are already (and al-
most  constantly)  poised  to  act,  and  all  they
need to process are any sensed deviations from
the predicted state. It is these calculated devi-
ations from predicted states (known as  predic-
tion errors) that thus bear much of the informa-
tion-processing burden, informing us of what is
salient and newsworthy within the dense sens-
ory  barrage.  The  extensive  use  of  top-down
probabilistic prediction here provides an effect-
ive means of avoiding the kinds of “representa-
tional  bottleneck”  feared  by  early  opponents
(e.g.,  Brooks 1991)  of  representation-heavy—
but  feed-forward  dominated—forms  of  pro-

cessing. Instead, the downward flow of predic-
tion  now  does  most  of  the  computational
“heavy-lifting”,  allowing  moment-by-moment
processing to focus only on the newsworthy de-
partures signified by salient (that is, high-preci-
sion—see section 3) prediction errors. Such eco-
nomy and preparedness is  biologically attract-
ive,  and neatly sidesteps the many processing
bottlenecks associated with more passive models
of the flow of information.

Action itself  (more on this shortly) then
needs to be reconceived. Action is not so much
a response to an input as a neat and efficient
way of selecting the next “input”, and thereby
driving a rolling cycle. These hyperactive sys-
tems  are  constantly  predicting  their  own  up-
coming  states,  and  actively  moving  so  as  to
bring some of them into being. We thus act so
as to bring forth the evolving streams of sensory
information that keep us viable (keeping us fed,
warm, and watered) and that serve our increas-
ingly  recondite  ends.  PP  thus  implements  a
comprehensive reversal of the traditional (bot-
tom-up,  forward-flowing)  schema.  The  largest
contributor to ongoing neural response, if PP is
correct,  is  the  ceaseless  anticipatory  buzz  of
downwards-flowing neural prediction that drives
both perception and action.  Incoming sensory
information is just one further factor perturbing
those restless pro-active seas. Within those seas,
percepts and actions emerge via a recurrent cas-
cade of sub-personal predictions forged (see be-
low)  from  unconscious  expectations  spanning
multiple spatial and temporal scales. 

Conceptually,  this  implies  a  striking  re-
versal,  in  that  the  driving  sensory  signal  is
really just providing corrective feedback on the
emerging top-down predictions.1 As ever-active
prediction engines, these kinds of minds are not,
fundamentally, in the business of solving puzzles
given to them as inputs. Rather, they are in the
business  of  keeping  us  one  step  ahead of  the
game,  poised to act and actively eliciting the
sensory flows that keep us viable and fulfilled. If
this is on track, then just about every aspect of
the passive forward-flowing model is false. We
are  not  passive  cognitive  couch  potatoes  so
1 For this observation, see Friston (2005), p. 825, and the discussion in

Hohwy (2013).
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much as proactive predictavores, forever trying
to stay one step ahead of the incoming waves of
sensory stimulation. 

2 Radical predictive processing

Such models involve a number of quite radical
claims. In the present treatment, I propose fo-
cusing upon just four:

 
1. The core flow of information is top-down, not
bottom-up, and the forward flow of sensory in-
formation  is  replaced  by  the  forward  flow  of
prediction error.
2. Motor control is just more top-down sensory
prediction.
3.  Efference  copies,  and  distinct  “controllers”
(inverse models) are replaced by top-down pre-
dictions.
4. Cost functions are absorbed into predictions.

 
One thing I shan’t try to do here is  re-

hearse  the  empirical  evidence  for  the  frame-
work. That evidence (which is substantial but
importantly  incomplete)  is  rehearsed in  Clark
(2013a) and  Hohwy (2013,  this collection). For
a recent attempt to specify a neural implement-
ation, see  Bastos et al. (2012). I now look at
each of these points in turn:

2.1 The core flow of information is top-
down, not bottom-up, and the forward 
flow of sensory information is 
replaced by the forward flow of 
prediction error

This is the heart and soul of the radical vision.
Incoming sensory information, if PP is correct,
is  constantly met with a cascade of  top-down
prediction, whose job is to predict the incoming
signal  across  multiple  temporal  and  spatial
scales. 

To see how this works in practice, consider
a  seminal  proof-of-concept  by  Rao &  Ballard
(1999). In this work, prediction-based learning
targets  image  patches  drawn  from  natural
scenes using a multi-layer artificial neural net-
work.  The network had no pre-set  task apart
from that of using the downwards connections

to match input samples with successful predic-
tions. Instead, visual signals were processed via
a hierarchical system in which each level tried
(in the way just sketched) to predict activity at
the  level  below  it  using  recurrent  (feedback)
connections.  If  the  feedback  successfully  pre-
dicted the lower-level activity, no further action
was required. Failures to predict enabled tuning
and revision of the model (initially, just a ran-
dom set of connection weights) generating the
predictions, thus slowly delivering knowledge of
the regularities  governing the domain.  In this
architecture, forward connections between levels
carried only the “residual errors” (Rao &  Bal-
lard 1999, p. 79) between top-down predictions
and actual lower level activity, while backward
or recurrent connections carried the predictions
themselves. 

After  training,  the  network  developed  a
nested structure of units with simple-cell-like re-
ceptive fields and captured a variety of import-
ant,  empirically-observed effects.  One such ef-
fect was “end-stopping”. This is a “non-classical
receptive  field”  effect  in  which  a  neuron  re-
sponds strongly to a short line falling within its
classical receptive field but (surprisingly) shows
diminishing  response  as  the  line  gets  longer.
Such effects (and with them, a whole panoply of
“context effects”) emerge naturally from the use
of  hierarchical  predictive  processing.  The  re-
sponse tails off as the line gets longer, because
longer lines and edges were the statistical norm
in the natural scenes to which the network was
exposed in training. After training, longer lines
are thus what is first predicted (and fed back,
as a hypothesis) by the level-two network. The
strong  firing  of  some  level-one  “edge  cells”,
when they are driven by shorter lines, thus re-
flects not successful feature detection by those
cells  but  rather  error  or  mismatch,  since  the
short segment was not initially predicted by the
higher-level network. This example neatly illus-
trates  the  dangers  of  thinking  in  terms  of  a
simple cumulative flow of feature-detection, and
also  shows  the  advantages  of  re-thinking  the
flow of processing as a mixture of top-down pre-
diction and bottom-up error correction.2 In ad-
2 This does not mean that there are no cells in v1 or elsewhere whose

responses match the classical profile. PP claims that each neural area
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dition  it  highlights  the  way  these  learning
routines latch on to the world in a manner spe-
cified by the  training  data.  End-stopped cells
are simply a response to the structure of  the
natural scenes used in training, and reflect the
typical  length of  the lines  and edges in these
natural scenes. In a very different world (such
as the underwater world of some sea-creatures)
such cells would learn very different responses.

These  were early  and relatively  low-level
results, but the predictive processing model it-
self has proven rich and (as we shall see) widely
applicable.  It  assumes  only  that  the  environ-
ment generates sensory signals by means of nes-
ted interacting causes and that the task of the
perceptual system is to invert this structure by
learning  and  applying  a  structured  internal
model—so as to predict the unfolding sensory
stream. Routines of this kind have recently been
successfully applied in many domains, including
speech perception, reading, and recognizing the
actions of oneself and of other agents (see Poep-
pel & Monahan 2011; Price & Devlin 2011; Fris-
ton et al. 2011). This is not surprising, since the
underlying  rationale  is  quite  general.  If  you
want to predict the way some set of sensory sig-
nals will change and evolve over time, a good
thing to do is to learn how those sensory signals
are determined by interacting external causes.
And a good way to learn about those interact-
ing causes is to try to predict how the sensory
signal will change and evolve over time. 

Now try  to  imagine  this  this  on  a  very
grand scale.  To predict the visually presented
scene,  the  system  must  learn  about  edges,
blobs, line segments,  shapes,  forms, and (ulti-
mately) objects. To predict text, it must learn
about  interacting  “hidden”  causes  in  the  lin-
guistic domain: causes such as sentences, words,
and  letters.  To  predict  all  of  our  rich  multi-
modal plays of sensory data, across many scales
of space and time, it must learn about interact-
ing hidden causes such as tables,  chairs,  cats,
faces, people, hurricanes, football games, goals,

contains two kinds of cell, or at least supports two functionally dis-
tinct response profiles, such that one functionality encodes error and
the other current best-guess content. This means that there can in-
deed be  (as  single  cell  recordings  amply demonstrate) recognition
cells in each area, along with the classical response profiles. For more
on this important topic, see Clark (2013a).

meanings, and intentions. The structured world
of  human experience,  if  this  is  correct,  comes
into  view  only  when  all  manner  of  top-down
predictions meet (and “explain away”) the in-
coming  waves  of  sensory  information.  What
propagates  forwards  (through the brain,  away
from the sensory peripheries) is then only the
mismatches, at every level, with predicted activ-
ity. 

This  makes  functional  sense.  Given  that
the  brain  is  ever-active,  busily  predicting  its
own  states  at  many  levels,  all  that  matters
(that is, all that is newsworthy, and thus ought
to  drive  further  processing)  are  the  incoming
surprises:  unexpected  deviations  from what  is
predicted. Such deviations result in prediction
errors  reflecting  residual  differences,  at  every
level and stage of processing, between the ac-
tual current signal and the predicted one. These
error signals  are used to refine the prediction
until the sensory signal is best accommodated. 

Prediction error  thus “carries  the news”,
and is pretty much the hero (or anti-hero) of
this whole family of models. So much so, that it
is sometimes said that:

In predictive coding schemes, sensory data
are replaced by prediction error,  because
that is the only sensory information that
has yet to be explained. (Feldman & Fris-
ton 2010, p. 2)

We can now savor the radicalism. Where tradi-
tional, feed-forward-based views see a progress-
ive (though top-down modulated) flow of com-
plex feature-detection, the new view depicts a
progressive, complex flow of feature prediction.
The top-down flow is not mere attentional mod-
ulation. It is the core flow of structured content
itself.  The forward-flowing signal,  by contrast,
has now morphed into a stream of residual er-
ror. I want to suggest, however, that we treat
this apparently radical inversion with some cau-
tion. There are two reasons for this—one con-
ceptual, and one empirical.

The first (conceptual) reason for caution is
that the “error signal” in a trained-up predict-
ive coding scheme is highly informative. Predic-
tion  error  signals  carry  detailed  information
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about the mismatched content itself. Prediction
errors  are  thus  as  structured  and nuanced in
their  implications  as  the  model-based  predic-
tions relative to which they are computed. This
means that, in a very real sense, the prediction
error signal is  not a mere proxy for incoming
sensory information – it is sensory information.
Thus, suppose you and I play a game in which I
(the “higher, predicting level”) try to describe
to you (the “lower level”) the scene in front of
your eyes. I can’t see the scene directly, but you
can. I do, however, believe that you are in some
specific room (the living room in my house, say)
that  I  have  seen  in  the  past.  Recalling  that
room as best I can, I say to you “there’s a vase
of yellow flowers on a table in front of you”. The
game then continues like this. If you are silent, I
take that as  your agreeing to my description.
But if I get anything that matters wrong, you
must tell me what I got wrong. You might say
“the flowers are yellow”. You thus provide an er-
ror  signal  that  invites  me  to  try  again  in  a
rather  specific  fashion—that  is,  to  try  again
with respect to the colour of the flowers in the
vase. The next most probable colour, I conjec-
ture,  is  red.  I  now describe  the  scene  in  the
same  way  but  with  red  flowers.  Silence.  We
have settled into a mutually agreeable descrip-
tion.3

The point to note is that your “error sig-
nal” carried some quite specific information. In
the pragmatic context of your silence regarding
all other matters, the content might be glossed
as “there is indeed a vase of flowers on the table
in front of me but they are not yellow”. This is
a pretty rich message. Indeed, it does not (con-
tent-wise) seem different in kind to the down-

3 To complete the image using this parlour game, we’d need to add a little
more structure to reflect the hierarchical nature of the message-passing
scheme.  We  might  thus  imagine  many  even-higher-level  “prediction
agents” working together to predict which room (house, world, etc.) the
layers below are currently responding to. Should sufficient prediction er-
ror signals accrue, this ensemble might abandon the hypothesis that sig-
nals are coming in from the living room, suggesting instead that they are
from the boudoir, or the attic. In this grander version (which recalls the
“mixtures of experts” model in machine learning—see Jordan & Jacobs
1994)—there are teams (and teams of teams) of specialist prediction
agents, all trying (guided top-down by the other prediction agents, and
bottom-up by prediction errors from the level below) to decide which
specialists should handle the current sensory barrage. Each higher-level
“prediction agent”, in this multi-level version, treats activity at the level
below as sensory information, to be explained by the discovery of apt
top-down predictions.

ward-flowing predictions themselves. Prediction
error signals are thus richly informative, and as
such (I would argue) not radically different to
sensory information itself. This is unsurprising,
since mathematically (as Karl Friston has poin-
ted out4) sensory information and prediction er-
ror  are  informationally  identical,  except  that
the latter are centred on the predictions. To see
this, reflect on the fact that prediction error is
just the original information minus the predic-
tion. It follows that the original information is
given by the prediction error plus the predic-
tion. Prediction error is simply error relative to
some specific prediction and as such it flags the
sensory information that is as yet unexplained.
The forward flow of prediction error thus consti-
tutes a forward flow of sensory information rel-
ative to specific predictions. 

There is more to the story at this point,
since the (complex, non-linear) ways in which
downward-flowing  predictions  interact  are  im-
portantly different to the (simple, linear) effects
of upward-flowing error signals. Non-linearities
characterize the multi-level construction of the
predictions, which do the “heavy lifting”, while
the prediction error signals are free to behave
additively (since all the complex webs of linkage
are already in place).  But the bottom line  is
that prediction error does not replace sensory
information in any mysterious or conceptually
challenging  fashion,  since  prediction  error  is
nothing  other  than  that  sensory  information
that has yet to be explained.

The second (empirical) reason for caution
is that it is, in any case, only one specific imple-
mentation of the predictive brain story depicts
the forward-flow as consisting solely of predic-
tion error. An alternative implementation (due
to Spratling 2008 and 2010—and see discussion
in  Spratling 2013)  implements  the  same  key
principles  using  a  different  flow  of  prediction
and error, and described by a variant mathem-
atical  framework.  This  illustrates  the  urgent
need  to  explore  multiple  variant  architectures
for prediction error minimization. In fact,  the
PP schema occupies just one point in a large
and complex space of  probabilistic generative-

4 Personal communication.
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model-based  approaches,  and  there  are  many
possible architectures and possible ways of com-
bining  top-down  predictions  and  bottom-up
sensory  information  in  this  general  vicinity.
These include foundational work by Hinton and
colleagues  on  deep  belief  networks  (Hinton &
Salakhutdinov 2006;  Hinton et al. 2006), work
that shares a core emphasis on the use of pre-
diction and probabilistic  multi-level generative
models, as well as recent work combining con-
nectionist  principles with Bayesian angles (see
McClelland 2013 and Zorzi et al. 2013). Mean-
while, roboticists such as  Tani (2007),  Saegusa
et al. (2008), Park et al. (2012), Pezzulo (2008),
and  Mohan et al. (2010) explore the use of a
variety of prediction-based learning routines as
a means of grounding higher cognitive functions
in  the  solid  bedrock  of  sensorimotor  engage-
ments with the world. Only by considering the
full space of possible prediction-and-generative-
model-based architectures and strategies can we
start  to  ask  truly  pointed  experimental  ques-
tions about the brain and about biological or-
ganisms; questions that might one day favor one
of these models (or,  more likely,  one coherent
sub-set of models5) over the rest, or else may re-
veal deep faults and failings among their sub-
stantial common foundations. 

2.2 Motor control is just more top-down 
sensory prediction

I shall, however, continue to concentrate upon
the specific explanatory schema implied by PP,
as  this  represents  (it  seems  to  me)  the  most
comprehensive  and  neuroscientifically  well-
grounded vision of the predictive mind currently
available. What makes PP especially interesting
—and conceptually challenging—is the seamless
integration  of  perception  and  action  achieved
under the rubric of “active inference”.

To  understand  this,  consider  the  motor
system. The motor system (like the visual cor-
tex) displays a complex hierarchical structure.6

5 One such subset is, of course, the set of hierarchical dynamic models
(see Friston 2008).

6 The appeal to hierarchical structure in PP, it should be noted, is
substantially different to that familiar from treatments  such as
Felleman & Van Essen (1991). Although I cannot argue for this
here (for more on this see  Clark 2013b;  in press)  the PP hier-

Such a structure allows complex behaviors to be
specified, at higher levels, in compact ways, the
implications of which can be progressively un-
packed at the lower levels. The traditional way
of  conceptualizing  the  difference,  however,  is
that in the case of motor control we imagine a
downwards flow of information, whereas in the
case of the visual cortex we imagine an upwards
flow. Descending pathways in the motor cortex,
this traditional picture suggests, should corres-
pond functionally to ascending pathways in the
visual  cortex.  This  is  not,  however,  the  case.
Within the motor cortex the downwards con-
nections (descending projections) are “anatom-
ically and physiologically more like backwards
connections in the visual cortex than the corres-
ponding  forward  connections”  (Adams et  al.
2013, p. 1).

This is suggestive. Where we might have
imagined the functional anatomy of a hierarch-
ical motor system to be some kind of inverted
image of that of the perceptual system, instead
the two seem fundamentally alike.7 The explan-
ation, PP suggests, is that the downwards con-
nections, in both cases, take care of essentially
the same kind of business—namely the business
of  predicting  sensory  stimulation.  Predictive
processing models  subvert,  we saw, the tradi-
tional picture with respect to perception. In PP,
compact higher-level  encodings are part of  an
apparatus that tries to predict the play of en-
ergy across the sensory surfaces. The same story
applies, recent extensions (see below) of PP sug-
gest, to the motor case. The difference is that
motor control is, in a certain sense, subjunctive.
It  involves  predicting  the  non-actual  sensory
trajectories that  would ensue  were we perform-
ing some desired action. Reducing prediction er-

archy is fluid in that the information-flows it supports are recon-
figurable moment-by-moment (by, for example, changing be and
theta band oscillations —see Bastos et al. 2015). In addition, PP
dispenses entirely with the traditional idea (nicely reviewed, and
roundly  rejected,  in  Churchland et  al. 1994) that  earlier  levels
must  complete  their  tasks  before  passing  information  “up”  the
hierarchy. The upshot is that the PP models are much closer to
dynamical  systems  accounts  than  to  traditional,  feed  forward,
hierarchical ones.

7 For the full story, see Adams et al. (2013). In short: “[t]he descending
projections from motor cortex share many features with top-down or
backward  connections  in  visual  cortex;  for  example,  corticospinal
projections originate in infragranular layers, are highly divergent and
(along with descending cortico-cortical projections) target cells  ex-
pressing NMDA receptors” (Adams et al. 2013, p. 1). 
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rors calculated against these non-actual states
then serves (in ways we are about to explore) to
make them actual. We predict the sensory con-
sequences of our own action and this brings the
actions about. 

The upshot is that the downwards connec-
tions, in both the motor and the sensory cortex,
carry  complex  predictions,  and  the  upwards
connections  carry  prediction  errors.  This  ex-
plains the otherwise “paradoxical” (Shipp et al.
2013, p. 1) fact that the functional circuitry of
the motor cortex does not seem to be inverted
with respect to that of the sensory cortex. In-
stead,  the very distinction between the motor
and the sensory cortex is now eroded—both are
in the business of top-down prediction, though
the kind of thing they predict is (of course) dif-
ferent.  The  motor  cortex  here  emerges,  ulti-
mately, as a multimodal sensorimotor area issu-
ing predictions in both proprioceptive and other
modalities. 

In this way, PP models have been exten-
ded (under the umbrella of “active inference”—
see Friston 2009; Friston et al. 2011) to include
the control of action. This is accomplished by
predicting the flow of sensation (especially that
of proprioception) that would occur were some
target  action  to  be  performed.  The  resulting
cascade of prediction error is then quashed by
moving the bodily plant so as to bring the ac-
tion about. Action thus results from our own
predictions concerning the flow of sensation—a
version  of  the  “ideomotor”  theory  of  James
(1890) and Lotze (1852), according to which the
very idea of moving, when unimpeded by other
factors, is what brings the moving about. The
resulting schema is one in which:

The perceptual and motor systems should
not be regarded as separate but instead as
a single active inference machine that tries
to predict its sensory input in all domains:
visual,  auditory,  somatosensory,  intero-
ceptive and, in the case of the motor sys-
tem, proprioceptive. (Adams et al. 2013, p.
4)

In the case of motor behaviors, the key driving
predictions, Friston and colleagues suggest, are

predictions of the proprioceptive patterns8 that
would ensue were the action to be performed
(see  Friston et  al. 2010).  To  make  an  action
come about, the motor plant responds so as to
cancel  out  proprioceptive prediction errors.  In
this way, predictions of the unfolding proprio-
ceptive patterns that would be associated with
the performance of some action serve to bring
that  action  about.  Proprioceptive  predictions
directly elicit motor actions (so traditional mo-
tor  commands  are  simply  replaced  by  those
proprioceptive predictions).

This  erases  any  fundamental  computa-
tional line between perception and the control
of action. There remains, to be sure, an obvious
(and important)  difference  in  direction  of  fit.
Perception here matches  neural  hypotheses  to
sensory  inputs,  and  involves  “predicting  the
present”; while action brings unfolding proprio-
ceptive inputs into line with neural predictions.
The difference,  as  Elizabeth Anscombe (1957)
famously  remarked,9 is  akin  to  that  between
consulting a shopping list to select which items
to purchase (thus letting the list determine the
contents  of  the  shopping  basket)  and  listing
some actually purchased items (thus letting the
contents of the shopping basket determine the
list). But despite this difference in direction of
fit, the underlying form of the neural computa-
tions is now revealed to be the same. Indeed,
the main difference between the motor and the
visual cortex, on this account, lies more in what
kind of thing (for example, the proprioceptive
consequences of a trajectory of motion) is pre-
dicted, rather than in how it is predicted. The
upshot is that:

The primary motor cortex is no more or
less  a  motor  cortical  area  than  striate
(visual)  cortex.  The  only  difference

8 Proprioception is the “inner” sense that informs us about the relative
locations of our bodily parts and the forces and efforts that are being
applied. It is to be distinguished from exteroceptive (i.e., standard
perceptual) channels such as vision and audition, and from intero-
ceptive channels informing us of hunger, thirst, and states of the vis-
cera.  Predictions  concerning  the  latter  may  (see  Seth 2013 and
Pezzulo 2014) play a large role in the construction of feelings and
emotions.

9 Anscombe’s target was the distinction between desire and belief, but
her  observations  about  direction  of  fit  generalize  (as  Shea 2013
notes) to the case of actions, here conceived as the motoric outcomes
of certain forms of desire.
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between the motor cortex and visual cor-
tex is that one predicts retinotopic input
while the other predicts proprioceptive in-
put from the motor plant. (Friston et al.
2011, p. 138)

Perception and action here follow the same ba-
sic logic and are implemented using the same
computational  strategy.  In each case,  the sys-
temic imperative remains the same: the reduc-
tion of ongoing prediction error. This view has
two rather  radical  consequences,  to  which  we
shall now turn.

2.3 Efference copies and distinct 
“controllers” are replaced by top-
down predictions

A long tradition in the study of motor control
invokes a “forward model” of the likely sensory
consequences of our own motor commands. In
this  work,  a  copy  of  the  motor  command
(known  as  the  “efference  copy”;  Von  Holst
1954)  is  processed  using  the  forward  model.
This model captures (or “emulates”—see Grush
2004)  the  relevant  biodynamics  of  the  motor
plant, enabling (for example) a rapid prediction
of the likely feedback from the sensory peripher-
ies.  It  does  this  by encoding  the  relationship
between motor commands and predicted sens-
ory outcomes. The motor command is thus cap-
tured using the efference copy which, fed to the
forward model, yields a prediction of the sens-
ory outcome (this is sometimes called the “co-
rollary  discharge”).  Comparisons  between  the
actual and the predicted sensory input are thus
enabled.

But motor control, in the leading versions
of this kind of account, requires in addition the
development  and  use  of  a  so-called  “inverse
model”  (see  e.g.,  Kawato 1999;  Franklin &
Wolpert 2011). Where the forward model maps
current motor commands in order to predicted
sensory effects, the inverse model (also known
as  a controller)  “performs the opposite  trans-
formation […] determining the motor command
required  to  achieve  some  desired  outcome”
(Wolpert et al. 2003, p. 595). Learning and de-
ploying an inverse model appropriate to some

task is, however, generally much more demand-
ing than learning the  forward model,  and re-
quires  solving  a  complex  mapping  problem
(linking the desired end-state to a nested cas-
cade  of  non-linearly  interacting  motor  com-
mands) while effecting transformations between
varying  co-ordinate  schemes  (e.g.,  visual  to
muscular or proprioceptive—see e.g., Wolpert et
al. 2003, pp. 594–596). 

PP (the full “action-inclusive” version just
described)  shares  many key insights  with this
work. They have common a core emphasis on
the prediction-based learning of a forward (gen-
erative) model, which is able to anticipate the
sensory consequences of action. But active infer-
ence,  as  defended  by  Friston  and  others—see
e.g.,  Friston (2011);  Friston et al. (2012)—dis-
penses with the inverse model or controller, and
along with it the need for efference copy of the
motor command. To see how this works, con-
sider that action is here reconceived as a direct
consequence  of  predictions  (spanning  multiple
temporal and spatial scales) about trajectories
of motion. Of special importance here are pre-
dictions about proprioceptive consequences that
implicitly minimize various energetic costs. Sub-
ject to the full cascade of hierarchical top-down
processing, a simple motor command now un-
folds into a complex set of predictions concern-
ing  both  proprioceptive  and  exteroceptive  ef-
fects. The proprioceptive predictions then drive
behavior, causing us to sample the world in the
ways that the current winning hypothesis dic-
tates.10 

Such  predictions  can  be  couched,  at  the
higher levels, in terms of desired states or traject-
ories  specified  using  extrinsic  (world-centered,
limb-centered) co-ordinates. This is possible be-
cause  the  required  translation  into  intrinsic
(muscle-based) co-ordinates  is  then devolved to
what are essentially classical reflex arcs set up to
quash priorioceptive prediction errors. Thus:

if  motor  neurons  are  wired  to  suppress
proprioceptive  prediction  errors  in  the
dorsal horn of the spinal cord, they effect-

10 For a simulation-based demonstration of the overall shape of the PP account, see
Friston et al. (2012). These simulations, as the authors note, turn out to imple-
ment the kind of “active vision” account put forward in Wurtz et al. (2011). 

Clark, A. (2015). Embodied Prediction.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 7(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570115 8 | 21

http://www.open-mind.net/
http://dx.doi.org/10.15502/9783958570115
http://www.open-mind.net/collection.pdf#nameddest=embodied-prediction


www.open-mind.net

ively  implement  an  inverse  model,  map-
ping from desired sensory consequences to
causes in intrinsic (muscle-based) coordin-
ates. In this simplification of conventional
schemes, descending motor commands be-
come topdown predictions of propriocept-
ive  sensations  conveyed  by  primary  and
secondary sensory afferents. (Friston 2011,
p. 491)

The  need  (prominent  in  approaches  such  as
Kawato 1999; Wolpert et al. 2003; and Franklin
&  Wolpert 2011)  for  a  distinct  inverse
model/optimal control calculation has now dis-
appeared. In its place we find a more complex
forward model mapping prior beliefs about de-
sired trajectories to sensory consequences, some
of which (the “bottom level” prorioceptive ones)
are automatically fulfilled. 

The need for efference copy has also disap-
peared. This is because descending signals are
already (just as in the perceptual case) in the
business  of  predicting  sensory  (both  proprio-
ceptive  and  exteroceptive)  consequences.  By
contrast, so-called “corollary discharge” (encod-
ing predicted sensory outcomes) is now endemic
and pervades the downwards cascade, since:

[…] every backward connection in the brain
(that conveys topdown predictions) can be
regarded as corollary discharge, reporting
the predictions of some sensorimotor con-
struct. (Friston 2011, p. 492)

This proposal may, on first encounter, strike the
reader as quite implausible and indeed too rad-
ical. Isn’t an account of the functional signific-
ance and neurophysiological reality of efference
copy one of the major success stories of contem-
porary  cognitive  and  computational  neurso-
cience? In fact, most (perhaps all) of the evid-
ence often assumed to favour that account is, on
closer examination, simply evidence of the per-
vasive and crucial role of forward models and
corollary  discharge—it  is  evidence,  that  is  to
say, for just those parts of the traditional story
that are preserved (and made even more cent-
ral) by PP. For example,  Sommer & (Wurtz’s
influential (2008) review paper makes very little

mention of  efference copy as such, but makes
widespread use of the more general concept of
corollary  discharge—though  as  those  authors
note, the two terms are often used interchange-
ably  in  the  literature.  A  more  recent  paper,
Wurtz et al. (2011),  mentions  efference  copy
only once, and does so only to merge it with
discussions  of  corollary  discharge  (which  then
occur 114 times in the text). Similarly, there is
ample  reason  to  believe  that  the  cerebellum
plays a special role here, and that that role in-
volves making or optimizing perceptual predic-
tions about upcoming sensory events (Bastian
2006;  Roth et al. 2013). But such a role is, of
course, entirely consistent with the PP picture.
This  shows,  I  suggest,  that  it  is  the  general
concept of forward models (as used by e.g., Mi-
all &  Wolpert 1996)  and  corollary  discharge,
rather than the more specific concept of effer-
ence copy as we defined it above, that enjoys
the  clearest  support  from  both  experimental
and cognitive neuroscience. 

Efference  copy  figures  prominently,  of
course,  in one particular set of  computational
proposals. These proposals concern (in essence)
the positioning of forward models and corollary
discharges within a putative larger cognitive ar-
chitecture involving multiple paired forward and
inverse models. In these “paired forward inverse
model”  architectures  (see  e.g.,  Wolpert &
Kawato 1998;  Haruno et al. 2003) motor com-
mands are copied to a stack of separate forward
models that are used to predict the sensory con-
sequences of actions. But acquiring and deploy-
ing such an architecture, as even its strongest
advocates concede, poses a variety of extremely
hard computational challenges (see  Franklin &
Wolpert 2011).  The  PP  alternative  neatly
sidesteps many of these problems—as we shall
see in section 2.4. The heavy lifting that is usu-
ally done by traditional efference copy, inverse
models, and optimal controllers is now shifted
to  the  acquisition  and  use  of  the  predictive
(generative) model—i.e., the right set of prior
probabilistic  “beliefs”.  This  is  potentially  ad-
vantageous if  (but only if)  we can reasonably
assume that these beliefs “emerge naturally as
top-down or empirical priors during hierarchical
perceptual inference” (Friston 2011, p. 492). 
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The deeper reason that efference copy may
be said to have disappeared in PP is thus that
the whole (problematic) structure of paired for-
ward  and  inverse  models  is  absent.  It  is  not
needed, because some of the predicted sensory
consequences (the predicted proprioceptive tra-
jectories) act as motor commands already. As a
result, there are no distinct motor commands to
copy,  and  (obviously)  no  efference  copies  as
such. But one could equally well  describe the
forward-model-based predictions of propriocept-
ive trajectories as “minimal motor commands”:
motor commands that operate (in essence) by
specifying results rather than by exerting fine-
grained limb and joint control. These minimal
motor  commands  (proprioceptive  predictions)
clearly influence the even wider range of predic-
tions concerning the exteroceptive sensory con-
sequences of upcoming actions. The core func-
tionality that is normally attributed to the ac-
tion of efference copy is thus preserved in PP, as
is the forward-model-based explanation of core
phenomena, such as the finessing of time-delays
(Bastian 2006) and the stability of  the visual
world despite eye-movements (Sommer & Wurtz
2006; 2008). 

2.4 Cost functions are absorbed by 
predictions.

Active inference also sidesteps the need for ex-
plicit cost or value functions as a means of se-
lecting  and sculpting  motor  response.  It  does
this (Friston 2011; Friston et al. 2012) by, in es-
sence, building these in to the generative model
whose  probabilistic  predictions  combine  with
sensory  inputs  in  order  to  yield  behaviors.
Simple examples of cost or value functions (that
might be applied to sculpt and select motor be-
haviors) include minimizing “jerk” (the rate of
change of acceleration of a limb during some be-
havior) and minimizing rate of change of torque
(for  these  examples  see  Flash &  Hogan 1985
and Uno et al. 1989 respectively). Recent work
on “optimal feedback control” minimizes more
complex  “mixed  cost  functions”  that  address
not  just  bodily  dynamics  but  also  systemic
noise  and  the  required  accuracy  of  outcomes
(see  Todorov 2004;  Todorov &  Jordan 2002).

Such cost functions (as Friston 2011, p. 496 ob-
serves) resolve the many-one mapping problem
that afflicts classical approaches to motor con-
trol. There are many ways of using one’s body
to achieve a certain goal, but the action system
has to choose one way from the many available.
Such devices  are  not,  however,  needed within
the framework on offer, since:

In active inference, these problems are re-
solved by prior beliefs about the trajectory
(that  may  include  minimal  jerk)  that
uniquely  determine  the  (intrinsic)  con-
sequences of (extrinsic) movements. (Fris-
ton 2011, p. 496)

Simple cost functions are thus folded into the
expectations that determine trajectories of mo-
tion. But the story does not stop there. For the
very same strategy applies to the notion of de-
sired  consequences  and  rewards  at  all  levels.
Thus we read that:

Crucially, active inference does not invoke
any “desired  consequences”.  It  rests  only
on experience-dependent learning and in-
ference: experience induces prior expecta-
tions,  which  guide  perceptual  inference
and action. (Friston et al. 2011, p. 157)

Notice  that  there  is  no  overall computational
advantage to be gained by this reallocation of
duties. Indeed, Friston himself is clear that:

[…] there is no free lunch when replacing
cost functions with prior beliefs [since] it is
well-known [Littman et al. (2001)] that the
computational complexity of a problem is
not reduced when formulating it as an in-
ference problem. (2011, p. 492)

Nonetheless, it may well be that this realloca-
tion (in which cost functions are treated as pri-
ors) has conceptually and strategically import-
ant consequences. It is easy, for example, to spe-
cify whole paths or trajectories using prior be-
liefs about (you guessed it) paths and trajector-
ies! Scalar reward functions, by contrast, specify
points or peaks. The upshot is that everything

Clark, A. (2015). Embodied Prediction.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 7(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570115 10 | 21

http://www.open-mind.net/
http://dx.doi.org/10.15502/9783958570115
http://www.open-mind.net/collection.pdf#nameddest=embodied-prediction


www.open-mind.net

that can be specified by a cost function can be
specified  by  some  prior  over  trajectories,  but
not vice versa. 

Related concerns have led many working
roboticists to argue that explicit cost-function-
based  solutions  are  inflexible  and  biologically
unrealistic,  and  should  be  replaced  by  ap-
proaches that entrain actions in ways that im-
plicitly exploit the complex attractor dynamics
of embodied agents (see e.g.,  Thelen &  Smith
1994;  Mohan &  Morasso 2011;  Feldman 2009).
One way to imagine this broad class of solutions
(for a longer discussion, see Clark 2008, Ch. 1)
is by thinking of the way you might control a
wooden  marionette  simply  by  moving  the
strings attached to specific body parts. In such
cases:

The  distribution  of  motion  among  the
joints is the “passive” consequence of the
[…] forces applied to the end-effectors and
the “compliance” of different joints. (Mo-
han & Morasso 2011, p. 5)

Solutions such as these,  which make maximal
use of learnt or inbuilt “synergies” and the com-
plex bio-mechanics of the bodily plant, can be
very  fluently  implemented  (see  Friston 2011;
Yamashita & Tani 2008) using the resources of
active inference and (attractor-based) generat-
ive  models.  For  example,  Namikawa et  al.
(2011) show how a generative model with multi-
timescale dynamics enables a fluent and decom-
posable (see also Namikawa & Tani 2010) set of
motor behaviors. In these simulations:

Action per se, was a result of movements
that conformed to the proprioceptive pre-
dictions of […] joint angles [and] perception
and action were both trying to minimize
prediction errors throughout the hierarchy,
where movement minimized the prediction
errors at the level of proprioceptive sensa-
tions. (Namikawa et al. 2011, p. 4)

Another example (which we briefly encountered
in the previous section) is the use of downward-
flowing  prediction  to  side-step  the  need  to
transform  desired  movement  trajectories  from

extrinsic  (task-centered)  to  intrinsic  (e.g.,
muscle-centered) co-ordinates: an “inverse prob-
lem” that is said to be both complex and ill-
posed (Feldman 2009; Adams et al. 2013, p. 8).
In active inference the prior beliefs that guide
motor action already map predictions couched
(at high levels) in extrinsic frames of reference
onto proprioceptive effects defined over muscles
and effectors, simply as part and parcel of or-
dinary online control.

By re-conceiving cost functions as implicit
in bodies of expectations concerning trajectories
of motion, PP-style solutions sidestep the need
to solve difficult (often intractable) optimality
equations during online processing (see  Friston
2011; Mohan & Morasso 2011) and—courtesy of
the  complex  generative  model—fluidly  accom-
modate signaling delays, sensory noise, and the
many-one  mapping  between  goals  and  motor
programs.  Alternatives  requiring  the  distinct
and  explicit  computation  of  costs  and  values
thus arguably make unrealistic demands on on-
line processing, fail to exploit the helpful char-
acteristics of the physical system, and lack bio-
logically plausible means of implementation. 

These various advantages come, however,
at  a  price.  For  the  full  PP  story  now  shifts
much  of  the  burden  onto  the  acquisition  of
those  prior  “beliefs”—the  multi-level,  multi-
modal webs of probabilistic expectation that to-
gether  drive  perception and action.  This  may
turn out to be a better trade than it at first ap-
pears, since (see Clark in in press) PP describes
a biologically plausible architecture that is just
about maximally well-suited to installing the re-
quisite  suites  of  prediction,  through embodied
interactions with the training environments that
we encounter,  perturb,  and—at  several  slower
timescales—actively construct. 

3 Putting predictive processing, body, 
and world together again

An important feature of the full  PP account
(see Friston 2009; Hohwy 2013; Clark in press)
is that the impact of specific prediction error
signals can be systematically varied according
to  their  estimated  certainty  or  “precision”.
The precision of a specific prediction error is
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its  inverse variance—the size  (if  you like)  of
its error bars. Precision estimation thus has a
kind  of  meta-representational  feel,  since  we
are,  in  effect,  estimating  the  uncertainty  of
our  own representations  of  the  world.  These
ongoing (task and context-varying)  estimates
alter the weighting (the gain or volume, to use
the standard auditory analogy) on select pre-
diction error units, so as to increase the im-
pact  of  task-relevant,  reliable  information.
One key effect of this is to allow the brain to
vary the balance between sensory inputs and
prior expectations at different levels (see Fris-
ton 2009, p. 299) in ways sensitive to task and
context.11 High-precision  prediction  errors
have greater gain, and thus play a larger role
in driving processing and response. More gen-
erally,  variable  precision-weighting  may  be
seen as the PP mechanism for implementing a
wide range of attentional effects (see Feldman
& Friston 2010).

Subtle applications of this strategy, as we
shall  shortly  see,  allow  PP  to  nest  simple
(“quick and dirty”) solutions within the larger
context  of  a  fluid,  re-configurable  inner  eco-
nomy;  an  economy in  which  rich,  knowledge-
based  strategies  and fast,  frugal  solutions  are
now merely different expressions of a unified un-
derlying  web of  processing.  Within  that  web,
changing  ensembles  of  inner  resources  are  re-
peatedly  recruited,  forming  and  dissolving  in
ways  determined  by  external  context,  current
needs, and (importantly) by flexible precision-
weighting reflecting ongoing estimations of our
own uncertainty. This process of inner recruit-
ment is itself constantly modulated, courtesy of
the complex circular causal dance of sensorimo-
tor engagement, by the evolving state of the ex-
ternal environment. In this way (as I shall now
argue) many key insights from work on embodi-
ment and situated, world-exploiting action may
be comfortably accommodated within the emer-
ging PP framework.
11 Malfunctions  of  this  precision-weighting  apparatus  have  recently

been implicated in a number of fascinating proposals concerning the
origins and persistence of various forms of mental disturbance, in-
cluding  the  emergence  of  delusions  and  hallucinations  in  schizo-
phrenia, “functional motor and sensory symptoms”, Parkinson’s dis-
ease,  and  autism—see  Fletcher &  Frith (2009),  Frith &  Friston
(2012),  Adams et al. (2012),  Brown et al. (2013),  Edwards et al.
(2012), and Pellicano & Burr (2012). 

3.1 Nesting simplicity within complexity

Consider the well-known “outfielder’s problem”:
running to catch a fly ball in baseball. Giving
perception its standard role, we might assume
that the job of the visual system is to transduce
information about the  current  position of  the
ball so as to allow a distinct “reasoning system”
to project its future trajectory. Nature, however,
seems to have found a more elegant and effi-
cient solution. The solution, a version of which
was first proposed in Chapman (1968), involves
running in a way that seems to keep the ball
moving at a constant speed through the visual
field.  As long as the fielder’s  own movements
cancel any apparent changes in the ball’s optical
acceleration,  she  will  end  up  in  the  location
where the ball hits the ground. This solution,
OAC  (Optical  Acceleration  Cancellation),  ex-
plains why fielders,  when asked to stand still
and  simply  predict  where  the  ball  will  land,
typically do rather badly. They are unable to
predict  the  landing  spot  because  OAC  is  a
strategy  that  works  by means  of  moment-by-
moment self-corrections that,  crucially,  involve
the  agent’s  own  movements.  The  suggestion
that  we  rely  on  such  a  strategy  is  also  con-
firmed by some interesting virtual reality exper-
iments in which the ball’s trajectory is suddenly
altered in flight, in ways that could not happen
in the real world—see Fink et al. 2009). OAC is
a succinct case of fast, economical problem-solv-
ing. The canny use of data available in the optic
flow enables the catcher to sidestep the need to
deploy a rich inner model to calculate the for-
ward trajectory of the ball.12 

Such  strategies  are  suggestive  (see  also
Maturana &  Varela 1980)  of  a  very  different
role of the perceptual coupling itself. Instead of
using sensing to get enough information inside,
past the visual bottleneck, so as to allow the
reasoning  system  to  “throw  away  the  world”
and solve  the problem wholly internally,  such
strategies use the sensor as an open conduit al-
lowing  environmental  magnitudes  to  exert  a
constant influence on behavior. Sensing is here

12 There  are  related accounts  of  how dogs  catch Frisbees—a rather
more demanding task due to occasional dramatic fluctuations in the
flight path (see Shaffer et al. 2004). 
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depicted as the opening of a channel, with suc-
cessful  whole-system  behavior  emerging  when
activity in this channel is kept within a certain
range. In such cases:

[T]he focus shifts from accurately repres-
enting an environment to continuously en-
gaging that environment with a body so as
to stabilize appropriate co-ordinated pat-
terns of behaviour. (Beer 2000, p. 97)

These focal shifts may be fluidly accommodated
within  the  PP framework.  To see  how,  recall
that  “precision  weighting”  alters  the  gain  on
specific prediction error units, and thus provides
a means of systematically varying the relative
influence  of  different  neural  populations.  The
most familiar role of such manipulations is to
vary the balance of influence between bottom-
up  sensory  information  and  top-down  model-
based expectation. But another important role
is the implementation of fluid and flexible forms
of  large-scale  “gating”  among  neural  popula-
tions.  This  works  because  very  low-precision
prediction errors will have little or no influence
upon ongoing processing, and will fail to recruit
or nuance higher-level representations. Altering
the  distribution  of  precision  weightings  thus
amounts,  as  we  saw  above,  to  altering  the
“simplest  circuit  diagram”  (Aertsen &  Preißl
1991)  for  current  processing.  When  combined
with the complex, cascading forms of influence
made available  by the  apparatus  of  top-down
prediction, the result is an inner processing eco-
nomy that is  (see  Clark in press)  “maximally
context-sensitive”. 

This suggests a new angle upon the out-
fielder’s  problem.  Here  too,  already-active
neural predictions and simple, rapidly-processed
perceptual  cues must  work together  (if  PP is
correct)  to  determine  a  pattern  of  precision-
weightings for different prediction-error signals.
This creates a pattern of effective connectivity
(a  temporary  distributed  circuit)  and,  within
that  circuit,  it  sets  the  balance  between top-
down and bottom-up modes of influence. In the
case at hand, however,  efficiency demands se-
lecting a circuit in which visual sensing is used
to cancel the optical acceleration of the fly ball.

This means giving high weighting to the predic-
tion errors  associated with cancelling the ver-
tical acceleration of the ball’s optical projection,
and (to put it  bluntly) not caring very much
about  anything  else.  Apt  precision  weightings
here function to select  what to predict at any
given  moment.  They  may  thus  select  a  pre-
learnt, fast, low-cost strategy for solving a prob-
lem, as task and context dictate. Contextually-
recruited  patterns  of  precision  weighting  thus
accomplish  a form of  set-selection or  strategy
switching—an  effect  already  demonstrated  in
some simple simulations of cued reaching under
the influence of changing tonic levels of dopam-
ine firing—see Friston et al. (2012).

Fast, efficient solutions have also been pro-
posed in the context of reasoning and choice. In
an  extensive  literature  concerning  choice  and
decision-making, it has been common to distin-
guish between “model-based” and “model-free”
approaches (see e.g., Dayan & Daw 2008; Dayan
2012;  Wolpert et  al. 2003).  Model-based
strategies  rely,  as  their  name  suggests,  on  a
model of the domain that includes information
about  how  various  states  (worldly  situations)
are  connected,  thus  allowing  a  kind  of  prin-
cipled estimation (given some cost function) of
the value of a putative action. Such approaches
involve the acquisition and the (computationally
challenging) deployment of fairly rich bodies of
information  concerning  the  structure  of  the
task-domain. Model-free strategies, by contrast,
are said to “learn action values directly, by trial
and error, without building an explicit model of
the environment, and thus retain no explicit es-
timate  of  the  probabilities  that  govern  state
transitions” (Gläscher et al. 2010, p. 585). Such
approaches implement “policies” that typically
exploit simple cues and regularities while non-
etheless delivering fluent, often rapid, response. 

The model-based/model-free distinction is
intuitive,  and resonates with old (but increas-
ingly  discredited)  dichotomies  between  reason
and habit, and between analytic evaluation and
emotion. But it seems likely that the image of
parallel,  functionally  independent,  neural  sub-
systems will not stand the test of time. For ex-
ample, a recent functional Magnetic Resonance
Imaging (fMRI) study (Daw et al. 2011) sug-
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gests that rather than thinking in terms of dis-
tinct  (functionally  isolated)  model-based  and
model-free  learning  systems,  we  may  need  to
posit  a  single  “more integrated computational
architecture”  Daw et  al. 2011,  p.  1204),  in
which the different brain areas most commonly
associated  with  model-based  and  model-free
learning  (pre-frontal  cortex  and  dorsolateral
striatum,  respectively)  each trade  in  both
model-free  and  model-based  modes  of  evalu-
ations and do so “in proportions matching those
that  determine  choice  behavior”  (Daw et  al.
2011, p. 1209). Top-down information,  Daw et
al. (2011) suggest, might then control the way
different  strategies  are  combined  in  differing
contexts for action and choice. Within the PP
framework, this would follow from the embed-
ding of shallow “model-free” responses within a
deeper  hierarchical  generative  model.  By thus
combining the two modes within an overarching
model-based  economy,  inferential  machinery
can, by and large, identify the appropriate con-
texts in which to deploy the model-free (“ha-
bitual”)  schemes.  “Model-based”  and  “model-
free” modes of valuation and response, if this is
correct,  name  extremes  along  a  single  con-
tinuum, and may appear in many mixtures and
combinations determined by the task at hand. 

This suggests a possible reworking of the
popular suggestion (Kahneman 2011) that hu-
man  reasoning  involves  the  operation  of  two
functionally distinct systems: one for fast, auto-
matic, “habitual” response, and the other dedic-
ated  to  slow,  effortful,  deliberative  reasoning.
Instead of a truly dichotomous inner organiza-
tion, we may benefit from a richer form of or-
ganization in which fast, habitual, or heuristic-
ally-based modes of response are often the de-
fault, but within which a large variety of pos-
sible strategies may be available. Humans and
other animals would thus deploy multiple—rich,
frugal  and  all  points  in  between—strategies
defined across a fundamentally unified web of
neural resources (for some preliminary explora-
tion of this kind of more integrated space, see
Pezzulo et al. 2013).  Some of  those strategies
will  involve  the  canny  use  of  environmental
structure  –  efficient  embodied  prediction  ma-
chines, that is to say, will often deploy minimal

neural models that benefit from repeated calls
to world-altering action (as when we use a few
taps of the smartphone to carry out a complex
calculation).

Nor, finally, is there any fixed limit to the
complexities  of  the  possible  strategic  embed-
dings  that  might  occur  even  within  a  single
more integrated system. We might, for example,
use some quick-and-dirty heuristic  strategy to
identify a context in which to use a richer one,
or  use  intensive  model-exploring  strategies  to
identify a context in which a simpler one will
do. From this emerging vantage point the very
distinction between model-based and model-free
response  (and  indeed  between  System  1  and
System 2) looks increasingly shallow. These are
now just convenient labels for different admix-
tures of resource and influence, each of which is
recruited in  the same general  way as circum-
stances dictate.13

3.2 Being human 

There  is  nothing  specifically  human,  however,
about the suite of mechanisms explored above.
The basic elements of the predictive processing
story,  as  Roepstorff (2013,  p.  45)  correctly
notes, may be found in many types of organism
and model-system. The neocortex (the layered
structure housing cortical columns that provides
the most compelling neural implementation for
predictive processing machinery) displays some
dramatic variations in size but is common to all
mammals. What, then, makes us (superficially
at least) so very different? What is it that al-
lows  us—unlike dogs,  chimps,  or  dolphins—to
latch on to distal hidden causes that include not
just  food,  mates,  and relative social  rankings,
but  also  neurons,  predictive  processing,  Higgs
bosons, and black holes? 

One  possibility  (Conway &  Christiansen
2001) is that adaptations of the human neural
apparatus have somehow conspired to create, in
us, an even more complex and context-flexible

13 Current  thinking  about  switching  between  model-free  and  model-
based strategies places them squarely in the context of hierarchical
inference, through the use of “Bayesian parameter averaging”. This
essentially associates model-free schemes with simpler (less complex)
lower levels of the hierarchy that may, at times, need to be contextu-
alized by (more complex) higher levels.
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hierarchical  learning  system  than  is  found  in
other  animals.  Insofar  as  the  predictive  pro-
cessing framework allows for rampant context-
dependent influence within the distributed hier-
archy, the same basic operating principles might
(given a few new opportunities for routing and
influence) result  in the emergence of qualitat-
ively novel forms of behavior and control. Such
changes might explain why human agents dis-
play what Spivey (2007, p. 169) describes as an
“exceptional sensitivity to hierarchical structure
in any time-dependent signal”.

Another  (possibly  linked,  and  certainly
highly complementary) possibility involves a po-
tent complex of features of human life, in par-
ticular our ability to engage in temporally co-
coordinated social interaction (see Roepstorff et
al. 2010) and our ability to construct artifacts
and design environments. Some of these ingredi-
ents have emerged in other species too. But in
the  human  case  the  whole  mosaic  comes  to-
gether under the influence of flexible and struc-
tured symbolic language (this was the target of
the Conway and Christiansen paper mentioned
above)  and  an  almost  obsessive  drive  (To-
masello et al. 2005) to engage in shared cultural
practices. We are thus able to redeploy our core
cognitive skills in the transformative context of
exposure to what  Roepstorff et al. (2010) call
“patterned  sociocultural  practices”.  These  in-
clude the use of symbolic codes (encountered as
“material  symbols”  (Clark 2006)  and complex
social  routines  (Hutchins 1995,  2014)—and
more  general,  all  the  various  ploys  and
strategies  known as “cognitive niche construc-
tion” (see Clark 2008).

A simple example is the way that learning
to perform mental arithmetic has been scaffolded,
in some cultures, by the deliberate use of an aba-
cus. Experience with patterns thus made available
helps  to  install  appreciation  of  many  complex
arithmetical operations and relations (for discus-
sion of this,  see  Stigler 1984). The specific ex-
ample does not matter very much, to be sure, but
the general strategy does. In such cases, we struc-
ture (and repeatedly re-strutcture) our physical
and social environments in ways that make avail-
able  new  knowledge  and  skills—see  Landy &
Goldstone (2005).  Prediction-hungry brains,  ex-

posed in the course of embodied action to novel
patterns of sensory stimulation, may thus acquire
forms of knowledge that were genuinely out-of-
reach prior  to  such physical-manipulation-based
re-tuning  of  the  generative  model.  Action  and
perception thus work together to reduce predic-
tion error against the more slowly evolving back-
drop  of  a  culturally  distributed  process  that
spawns  a  succession  of  designed  environments
whose impact on the development (e.g., Smith &
Gasser 2005) and unfolding (Hutchins 2014) of
human thought and reason can hardly be overes-
timated. 

To further appreciate the power and scope
of  such  re-shaping,  recall  that  the  predictive
brain is not doomed to deploy high-cost, model-
rich  strategies  moment-by-moment  in  a  de-
manding  and  time-pressured  world.  Instead,
that very same apparatus supports the learning
and contextually-determined deployment of low-
cost  strategies  that  make  the  most  of  body,
world, and action. A maximally simple example
is  painting  white  lines  along  the  edges  of  a
winding cliff-top road.  Such environmental  al-
terations allow the driver to solve the complex
problem of keeping the car on the road by (in
part)  predicting  the  ebb  and  flow  of  various
simpler optical features and cues (see e.g., Land
2001). In such cases, we are building a better
world in which to predict, while simultaneously
structuring  the  world  to  cue  the  low-cost
strategy at the right time. 

3.3 Extending the predictive mind

All this suggests a very natural model of “ex-
tended  cognition”  (Clark &  Chalmers 1998;
Clark 2008), where this is simply the idea that
bio-external  structures  and  operations  may
sometimes form integral parts of an agent’s cog-
nitive routines.  Nothing in  the PP framework
materially alters, as far as I can tell, the argu-
ments previously presented, both pro and con,
regarding the possibility and actuality of genu-
inely  extended  cognitive  systems.14 What  PP
14 For  a  thorough  rehearsal  of  the  positive  arguments,  see  Clark

(2008). For critiques, see  Rupert (2004,  2009),  Adams & Aizawa
(2001), and Adams & Aizawa (2008). For a rich sampling of the
ongoing debate, see the essays in  Menary (2010) and  Estany &
Sturm (2014). 
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does offer, however, is a specific and highly “ex-
tension-friendly” proposal concerning the shape
of the specifically neural contribution to cognit-
ive success. To see this, reflect on the fact that
known external (e.g., environmental) operations
provide—by  partly  constituting—additional
strategies  apt  for  the  kind  of  “meta-model-
based”  selection  described  above.  This  is  be-
cause actions that engage and exploit  specific
external resources will now be selected in just
the  same  manner  as  the  inner  coalitions  of
neural  resources  themselves.  Minimal  internal
models that involve calls to world-recruiting ac-
tions may thus be selected in the same way as a
purely internal model. The availability of such
strategies (of trading inner complexity against
real-world action) is the hallmark of embodied
prediction machines.

As a simple illustration, consider the work
undertaken by Pezzulo et al. (2013). Here, a so-
called “Mixed Instrumental Controller” determ-
ines whether to choose an action based upon a
set of simple, pre-computed (“cached”) values,
or by running a mental simulation enabling a
more flexible, model-based assessment of the de-
sirability,  or  otherwise,  of  actually  performing
the action. The mixed controller computes the
“value  of  information”,  selecting  the more  in-
formative (but costly) model-based option only
when that value is sufficiently high. Mental sim-
ulation,  in  such cases,  then produces  new re-
ward expectancies  that  can determine current
action by updating the values used to determine
choice.  We can think of  this  as  a  mechanism
that,  moment-by-moment,  determines  (as  dis-
cussed in previous sections) whether to exploit
simple, already-cached routines or to explore a
richer  set  of  possibilities  using  some  form of
mental simulation. It is easy to imagine a ver-
sion of the mixed controller that determines (on
the basis of past experience) the value of the in-
formation that it believes would be made avail-
able by some kind of cognitive extension, such
as the manipulation of an abacus, an iPhone, or
a physical model. Deciding when to rest, con-
tent with a simple cached strategy, when to de-
ploy a more costly mental simulation, and when
to exploit the environment itself as a cognitive
resource are thus all options apt for the same

kind  of  “meta-Bayesian”  model-based  resolu-
tion.

Seen from this perspective, the selection of
task-specific  inner  neural coalitions  within  an
interaction-dominated  PP  economy  is  entirely
on  a  par  with  the  selection  of  task-specific
neural–bodily–worldly ensembles.  The  recruit-
ment and use of extended (brain–body–world)
problem-solving  ensembles  now  turns  out  to
obey many of the same basic rules, and reflects
many  of  the  same  basic  normative  principles
(balancing efficacy and efficiency, and reflecting
complex precision estimations) as does the re-
cruitment of temporary inner coalitions bound
by effective connectivity. In each case, what is
selected  is  a  temporary  problem-solving  en-
semble (a “temporary task-specific device”—see
Anderson et al. 2012) recruited as a function of
context-varying estimations of uncertainty. 

4 Conclusion: Towards a mature science 
of the embodied mind

By self-organizing around prediction error, and
by learning a generative rather than a merely
discriminative  (i.e.,  pattern-classifying)  model,
these approaches realize many of  the goals  of
previous work in artificial neural networks, ro-
botics, dynamical systems theory, and classical
cognitive science. They self-organize around pre-
diction  error  signals,  perform  unsupervised
learning using a multi-level architecture, and ac-
quire a satisfying grip—courtesy of the problem
decompositions  enabled  by  their  hierarchical
form—upon  structural  relations  within  a  do-
main. They do this, moreover, in ways that are
firmly grounded in the patterns of sensorimotor
experience  that  structure  learning,  using  con-
tinuous, non-linguaform, inner encodings (prob-
ability density functions and probabilistic infer-
ence). Precision-based restructuring of patterns
of effective connectivity then allow us to nest
simplicity  within  complexity,  and  to  make  as
much (or as little)  use of  body and world as
task and context dictate. 

This is encouraging. It might even be that
models  in  this  broad ballpark offer  us a  first
glimpse of the shape of a fundamental and uni-
fied science of the embodied mind.
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In this commentary, I suggest that the predictive processing framework (PP) might
be applicable to areas beyond those identified by Clark. In particular, PP may be
relevant for our understanding of perceptual content, consciousness, and for ap-
plied cognitive neuroscience. My main claim for each area is as follows:

1) PP urges an organism-relative conception of perceptual content.
2) Historical a priori accounts of the structure of perceptual experience con-

verge with results from PP.
3) There are a number of areas in which PP can find important practical ap-

plications, including education, public policy, and social interaction.
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1 Introduction

An  understandable  reaction  to  the  predictive
processing framework (PP) is to think that it is
too ambitious (Hohwy this collection). My sug-
gestion  in  this  commentary is  the opposite.  I
will argue that PP can be fruitfully applied to
areas of inquiry that have so far received little,
if  any,  attention  from the  proponents  of  PP.
Perhaps we can extend the explanandum even
further than Andy Clark has recommended. 

There is a certain rhetorical danger to the
position I am urging. One should not oversell

one’s case. I hope to avoid this danger by being
clear upfront that my goal is not to convince
the skeptic of the attraction of PP. I cannot im-
prove on Clark (and others, see below) in that
regard. Instead, I investigate the following ques-
tion: if some version of PP (again, see below) is
true, then what are the larger implications for
human self-understanding?  My answer  to this
question covers three topics. First I will engage
with Clark’s discussion of perceptual processing
from sections 1 and 2.1 of his article. There I
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will sketch how PP’s reversal of the traditional
model of perceptual processing may have signi-
ficant implications for the way in which we un-
derstand perceptual content, which is a core is-
sue  in  the  philosophy  of  psychology.  In  the
second section  I  will  turn  to  another  area  of
philosophical  concern:  consciousness.  Historic-
ally, consciousness research has had a rocky re-
lationship with the sciences of the mind. I hope
to point towards the possibility of a rapproche-
ment. In the final section of the commentary, I
will quickly touch on some practical matters. If
PP  is  true,  then  there  are  important  con-
sequences  for  the  way in  which  we  approach
topics in education, public policy, and social in-
teraction.

My goal  is  to  indicate  possible  areas  in
which  Clark’s  article  (and  related  themes)
might serve as a foundation for future directions
of  research.  My  main  claims  are  as  follows,
numbered according to each section:

1. PP urges an organism-relative conception of
perceptual content.

2. Historical  a priori accounts of the structure
of  perceptual  experience  converge  with  res-
ults from PP.

3. There are a number of areas in which PP can
find important practical applications.

Before entering into the specific issues, I should
add a note about what I mean by PP. Here I
am following the general theoretical framework
expressed in Clark’s article as well as in a num-
ber of  other  publications (Clark 2013;  Hohwy
2013). The approach has a number of intellec-
tual  roots,  including  Hermann von  Helmholtz
(1867) and  Richard Gregory (1980). The main
contemporary  expression  of  PP  perhaps  owes
the most to Karl Friston (2005, 2008, 2010) and
his collaborators, also with important develop-
ments of the generative model by Geoffrey Hin-
ton (2007). By referring to PP as one general
framework, I do not mean to imply that there
are  no  outstanding  issues  of  disagreement  or
open questions within PP. As Clark indicates,
citing  Spratling (2013), there are a number of
options being developed as to the specific imple-
mentation of PP. Also, in the philosophical lit-

erature  there  is  an  emerging  question  about
whether to understand PP as internalist or ex-
ternalist regarding the vehicles of mental states
(Hohwy 2014)—I take  no  position  either  way
here, but see footnote  2. Overall,  my remarks
are motivated by Clark’s exposition of PP, but
they should be applicable to other approaches
and interpretations as well.

2 A new conception of perceptual content

Clark has emphasized the way in which PP de-
parts from the standard picture in perceptual
psychology,  and  from  David Marr’s  (1982)
model of visual processing in particular (pp. 1–
5). According to the standard account, the flow
of  information  is  “bottom-up,”  as  perceptual
systems  construct  increasingly  sophisticated
representations based on the information trans-
duced at the periphery. According to PP, per-
ception involves the active prediction of the up-
coming  sensory  input,  “top-down.”  Deviation
from what is predicted, known as the prediction
error,  propagates  upwards  through  the  hier-
archy until it is explained away by the Bayesian
generative model. 

Now I would like to add that the standard
picture  in  perceptual  psychology  has  been
widely regarded as complementary to the stand-
ard picture in the philosophy of perception (see
Tye 2000, for example). One central question in
the  philosophy of  perception  is  the  following:
what is  the  content of  perceptual  states?  Or,
what does perception  represent? The standard
answer, in tune with Marr’s approach, is that
perceptual systems represent the external world,
more or less as it really is. As Marr puts it, the
purpose of vision is “to know what is where by
looking”  (1982).  This  way  of  thinking  about
perceptual content is almost a commonplace in
the philosophical literature (Lewis 1980, p. 239;
Fodor 1987, Ch. 4; Dretske 1995, Ch. 1). Kath-
leen Akins has described how the orthodox con-
ception regards the senses as “servile” in that
they  report  on  the  environmental  stimulus
“without  fiction  or  embellishment”  (1996,  pp.
350–351).

Since PP overturns the reigning model in
perceptual  psychology,  one  might  now  ask
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whether it also overturns the reigning model in
the philosophy of perception. Here are two ini-
tial reasons to think that it does. First, accord-
ing to PP, there is always an active contribution
from the organism, or at least from a part of
the  organism.  Perceptual  states  are  generated
internally and spontaneously by the ongoing dy-
namics  of  the  generative  model.  Those  states
are  constrained by perceptual sampling of  the
world, not driven by input from the world. Per-
ceptual  states  are  driven  by  the  endogenous
activity  of  the  predictive  brain.  The  relevant
causal history of these states begins, if you will,
within the brain, rather than from the outside.
Each organism’s generative model is unique in
that  it  has been formed and continuously re-
vised according to the particular trajectory of
that organism’s cycle of action and perception.
As Clark himself  puts it,  the forward flow of
sensory information is always “relative to spe-
cific  predictions”  (p.  6).  These  considerations
make it clear that there can be variation in per-
ceptual content for identical environmental con-
ditions.  Perceivers  with  different  histories  will
have  different  predictions  (Madary 2013,  pp.
342–345).  The degree  of  variation  is  an  open
question,  but  it  is  reasonable  to  expect  vari-
ation. 

A second reason to think that PP motiv-
ates a richer conception of perceptual content is
that perception, according to PP, is not simply
in the service of informing the organism “what
is where.” One main feature of PP is that per-
ception and action work together in the service
of  minimizing  prediction  error.  Clark explains
that in “active inference […] the agent moves its
sensors in ways that amount to actively seeking
or  generating  the  sensory  consequences  that
they […] expect” (2013, p. 6, also see his discus-
sion on page 16). If this is right, then percep-
tion does not serve the purpose of  simply re-
porting  on  the  state  of  the  environment.  In-
stead,  perception  is  guided  by  expectation.
While the received view of perceptual content
answers the question of  “what is  out there?”,
PP  suggests  that  perceptual  content  answers
the  question  of  “is  this  what  I  expected  and
tested via active inference?” In a way, PP sim-
plifies perceptual content by replacing the goal

of representing the world with the single guid-
ing principle of error minimization. 

These two points suggest an understand-
ing of perceptual content as something that is
deeply informed by the specific history and em-
bodiment of the organism. The content of per-
ception is a complex interplay between particu-
lar organisms and their particular environments.
At least on the face of it, this way of consider-
ing perception suggests new challenges and in-
teresting new theoretical options for philosoph-
ers interested in describing perceptual content.
For  one  thing,  it  suggests  that  propositional
content  as  expressed  using  natural  language
(Searle 1983,  p.  40)  may be ill-suited for  the
task of  describing perceptual  content.  Natural
language  does  not  typically  include  reports
about prediction-error minimization, nor does it
capture the  fine-grained differences in  percep-
tual content that will arise due to slight vari-
ations in the predictions made by different or-
ganisms. The traditional account of perceptual
content, following Marr, does not include such
differences,  and is thus better disposed to ex-
pression using natural language.

These  new  challenges  for  understanding
perceptual content may offer at the same time a
general lesson for understanding all mental con-
tent in a naturalistic manner. Let me explain.
One of the main goals in the philosophy of psy-
chology has been to naturalize intentionality, to
give an account of the content of mental states
in terms of the natural sciences (in non-mental-
istic  terms).  Well-known  attempts  include
causal  co-variation  (Fodor 1987,  Ch.  4)  and
teleosemantics  (Millikan 1984,  2004).  All  at-
tempts  have  met  with  compelling  counter-
examples.1 Importantly, one implicit presupposi-
tion in the debate is that mental content should
be conceived along the lines of the traditional
view of perceptual content sketched above. That
is, mental states are thought to be about bits of
the objective world considered independently of
the  particular  organism  who  possesses  those
mental states. To use a standard example, my
belief  that there is  milk in  the refrigerator  is
true if and only if there is milk in the refriger-
1 For an overview of the major theories and their challenges, see Jacob

(2010, section 9) and the references therein.
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ator. This belief is about bits of the objective
world: milk and the refrigerator in particular.
Nothing else about my mind is deemed relevant
for understanding the content of that belief. To
use the familiar phrase, beliefs have a mind-to-
world direction of fit (based on Anscombe 1957,
§32). 

If my reading of PP is right, and percep-
tual  content turns out to be a matter  of  the
complex  interaction  between  particular  organ-
isms and their environments, then the comfort-
able  pre-theoretical  mind/world  distinction
might  need  revision.2 Recall  the  discussion
above, in which I claimed that, on the new PP-
inspired understanding of perception the ques-
tion is about whether sensory stimulation fulfils
the  expectations  of  particular  organisms.  All
perceptual states are thereby colored, as it were,
by  the  mental  lives  of  the  organisms  having
those  states.  Organisms  are  not  interested  in
what the world is like. Organisms are interested
in sustaining their integrity and physical exist-
ence; they are interested in what the world is
like  relative to their own particular sensorimo-
tor  trajectory  through  the  world,  a  trajectory
that  is  partly  determined  by their  phenotype
(Friston et al. 2006). This refashioning of  the
mind/world relationship is unorthodox, but it is
hardly new. Similar ideas can be found in  von
Uexküll’s  Umwelt (1934),  Merleau-Ponty’s  dis-
cussion  of  sensory  stimuli  (1962,  p.  79),  Mil-
likan’s “pushmi-pullyu” representations (1995),
Akins’  narcissistic  sensory  systems  (1996),
Clark’s earlier work (1997, Ch. 1), and in Met-
zinger’s ego tunnel (2009, pp. 8–9).

Now return to the problem of naturalizing
intentionality.  If  we  replace  the  notion  of  a
purely  world-directed  mental  state  with  a
world-relative-to-the-organism-directed  mental
state,  then  naturalizing  intentionality  must
somehow incorporate  the relationship between

2 One possibility here has been explored recently by Karl Friston using
the concept of a Markov blanket, which produces a kind of partition
between information states.  As I read Friston, he advocates a plural-
ism about Markov blankets.  On this view, there is not one boundary
between mind and world, but instead there are a number of salient
boundaries  within,  and  perhaps  around,  living  organisms.  Friston
writes that “ . . . a system can have a multitude of partitions and
Markov blankets . . . the Markov blanket of an animal encloses the
Markov blankets  of  its  organs,  which enclose  Markov blankets  of
cells, which enclose Markov blankets of nuclei . . .” (2013, p. 10).

the organism and its world. One way to pursue
this project is to make it a matter of biology
and  physics.  All  living  organisms  keep  them-
selves far from thermodynamic equilibrium by
continuously  exchanging  matter  and  energy
with their environment (Haynie 2008). Perhaps
intentionality can be recast in terms of the or-
ganism’s ongoing struggle to maintain itself as a
living entity. This line of thought is central to
the  enactivist  “sense-making”  of  Maturana,
Varela,  and  Thompson  (Maturana &  Varela
1980;  Thompson 2007).  Crucially,  it  is  also  a
central feature of Friston’s version of PP. Ac-
cording  to  Friston,  prediction  error  minimiza-
tion is a kind of functional description for the
physical  process  of  the  organism’s  minimizing
free energy in  its  effort  to  maintain  itself  far
from thermodynamic equilibrium (2013). Natur-
alizing intentionality may be just a matter of
physics (see Dixon et al. 2014 for an implement-
ation of this strategy for problem-solving tasks).

Before  moving  on  to  the next  section,  I
should add two qualifications. First, the idea of
perceptual content being partly determined by
the  particular  history  of  the  perceiver  should
not be misunderstood as some kind of radical
relativism  with  regard  to  perceptual  content.
Even if perceptual content is  partly determined
by the details of the organism, it is also partly
determined by the world itself. As proponents of
PP frequently claim, our generative models mir-
ror the causal  structure of  the world (Hohwy
2013, Ch. 1). The point I am emphasizing here
is that the causal structure of the world that is
extracted is a structure relative to the embodi-
ment (see  Clark this collection,  section 2.4)—
and perceptual  history—of  the  perceiver.  The
causal  structure  mirrored  by  a  chimpanzee’s
generative model is, in important ways, unlike
the causal structure mirrored by that of a cat-
fish.

The second  qualification  has  to  do  with
my remark that naturalizing intentionality may
be just a matter of physics. Even if one allows
that the approach I sketched shows promise, it
is important to emphasize the explanatory gulf
that remains. The intentionality-as-physics ap-
proach  might  succeed  in  explaining  a  bac-
terium’s  intentional  directedness  towards  a
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sugar gradient (Thompson 2007, p. 74–75), but
it is far from clear how it would apply to my
belief that P—say, for example, that California
Chrome won the Kentucky Derby in 2014. 

The  main  argument  of  this  section  has
been  that  PP  motivates  an  understanding  of
perceptual content that is always organism-rel-
ative. Clark’s version of PP, while not in con-
flict with this idea, has not addressed it expli-
citly, especially as it relates to the philosophy of
perception. My goal here has been to do just
that.

3 Consciousness

In this section I would like to consider how con-
scious experience might relate to the PP frame-
work.  In  particular,  I  suggest  that  there  is  a
convergence  between  a  priori descriptions  of
consciousness, on one hand, and the structure of
information processing according to PP on the
other.3 I will not remark on the way in which
PP  relates  to  some  well-known  issues  in  the
study of consciousness, such as the hard prob-
lem or the explanatory gap. It is not clear to me
that  PP  has  anything  new  to  contribute  to
these topics. Nor will I make any claims about
which  existing  theories  of  the  neural  basis  of
consciousness fit best with PP, although I sus-
pect there is some interesting work there to be
done.

My main concern here is in the  structure
of conscious experience, of visual experience in
particular. Here I adopt a strategy recommen-
ded  by  Thomas Nagel (1974),  and  David
Chalmers (1996, pp. 224–225). Nagel puts the
idea nicely,  “[…]  structural  features  of  percep-
tion might be more accessible to objective de-
scription, even though something would be left
out” (1974, p. 449, cited in Chalmers 1996, pp.
382 f.). The strategy has been implemented, in
fact, using Marr’s theory of vision—the theory
that, as Clark puts it, PP turns upside down.
Ray Jackendoff (1987, p. 178) and  Jesse Prinz
(2012, p. 52) have both emphasized the struc-
tural  similarities  between  conscious  visual  ex-
perience  and  Marr’s  2.5  dimensional  sketch.
3 For a theoretical treatment of the functional significance of this con-

vergence, see Metzinger & Gallese (2003).

Visual phenomenology is not a flat two-dimen-
sional  surface,  because  we  see  depth.  But
neither is visual phenomenology fully three-di-
mensional,  because  we  cannot  see  the  hidden
sides of objects. Marr’s 2.5 dimensional repres-
entation captures the level in-between two and
three dimensional representation that seems to
correspond to our visual phenomenology; it cap-
tures  Hume’s insight that visual experience is
perspectival: “The table, which we see, seems to
diminish,  as  we  remove  farther  from  it  […]”
(1993, p. 104). 

As  Hume  emphasized  the  perspectival
nature of visual experience, Kant famously em-
phasized the temporal nature of experience in
the second section of the Transcendental Aes-
thetic:  “Time  is  a  necessary  representation
(Vorstellung),  which lays at the foundation of
all intuitions” (1781/1887/1998, A31). In an el-
egant synthesis of these two features of visual
experience, Edmund Husserl suggested that the
general structure of visual experience is one of
anticipation and fulfillment:

Every percept, and every perceptual con-
text,  reveals  itself,  on  closer  analysis,  as
made up of components which are to be
understood  as  ranged  under  two  stand-
points of intention and (actual or possible)
fulfillment. (Logical Investigation, VI §10
1900, Findlay trans., 1970)

In  this  passage  from  his  early  work,  Husserl
writes  of  “intention  and  fulfillment,”  but  he
later  replaced  “intention”  with  “anticipation”
when dealing with perception.4 

The main point is  fairly straightforward:
we perceive properties by implicitly anticipating
how  the  appearances  of  those  properties  will

4 When first developing the framework, he used the more general term
“intention” because he was dealing with linguistic meaning, not per-
ception.  When applying the framework to perception one can be
more precise about the nature of the empty perceptual intentions:
they  are  anticipatory.  In  his  later  work,  his Analyses  of  Passive
Synthesis from the 1920s,  Husserl ties in perceptual intentions with
his work on time consciousness (1969) and refers to them as proten-
tions (Protentionen; Husserl 1966, p. 7).  In the same work, he refers
to perceptual protentions as anticipations (Erwartungen, 1966, p. 13,
and antizipiert, 1966, p. 7).  See Madary (2012a) for a discussion of
how Husserl’s framework can be situated relative to contemporary
philosophy of perception.  Also see Bernet et al. (1993, p. 128) and
Hopp (2011).
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change as we move (or  as  the objects  move).
Husserl’s  proposal  accommodates  the  per-
spectival character of experience because it ad-
dresses the question of how we perceive object-
ive properties despite being constrained to one
perspective at a time. And it accommodates the
temporal nature of experience because anticipa-
tion is always future-directed.

Here is not the place to enter into the de-
tails of the thesis that the general structure of
conscious experience is one of anticipation and
fulfillment (see my  2013 for some of these de-
tails), but I should add one more point. As both
Husserl (1973,  p.  294)  and  Daniel Dennett
(1991, Ch. 3) have noted, peripheral vision is
highly indeterminate.5 Also, as we explore our
environment we experience a continuous trade
off between determinacy and indeterminacy. As
I  lean in  for a closer  look at one object,  the
other objects in my visual field fade into inde-
terminacy. In order to account for this feature
of experience, we can note that visual anticipa-
tions have various degrees of determinacy.6

Now let us return to PP. If Hume provides
the philosophy of perception for Marr’s theory
of vision, then Husserl provides the philosophy
of perception for PP. The structural similarities
should be apparent. The predictive brain under-
lies the essentially anticipatory structure of per-
ceptual awareness. Degrees of determinacy are
encoded probabilistically in our generative mod-
els  (Clark 2013;  Madary 2012b).  Action  and
perception are tightly linked (Clark this collec-
tion, p. 9) as self-generated movements stir up
new perceptual anticipations.

Many  readers  will  see  a  connection
between  the  thesis  of  anticipation  and  fulfill-
ment, on one hand, and the sensorimotor ap-
proach  to  perception  (O’Regan &  Noë 2001;
Noë 2004) on the other. Overall, there is signi-
ficant  thematic  overlap  between  the  two
(Madary 2012a, p. 149). As Seth (2014) has ar-
gued, many of the central claims of the sensor-
imotor approach can be incorporated into the
PP framework.7 This synthesis offers impressive
explanatory power, bringing the standard sen-
sorimotor  experimental  evidence  (reversing
5 For impressive empirical work on this theme, see Freeman & Simon-

celli (2011).

goggles, change blindness, selective rearing) to-
gether with the theoretical neuroscience of PP.
The explanatory power is even more impressive
if  I  am  correct  that  PP  reflects  the  general
structure of visual phenomenology, where pre-
dictive processing corresponds to perceptual an-
ticipations and probabilistic coding corresponds
to experienced indeterminacy.

4 Applied cognitive neuroscience

I  would  like  to  begin  this  section  with  some
general comments about new opportunities for
human self-understanding, about extending the
explanandum.  Academic  disciplines  are  stand-
ardly divided into the sciences and the humanit-
ies, and some have expressed discomfort about
the distance between the two modes of inquiry,
or  between  the  two cultures,  as  Snow (1959)
famously  put  it  (also  see  Brockman 1996).
There is an immediate appeal to Metzinger’s as-
sertion  that  “Epistemic  progress  in  the  real
world is something that is achieved by all dis-
ciplines  together”  (2003,  p.  4).  If  my  claims
from the previous section are on the right track,
then we have a convergence of results between
the two independent modes of inquiry, between
the empirical sciences and the humanities. It is
tempting to hope that this convergence signals
the beginning of a rapprochement between the
sciences and the humanities. Perhaps we are at
the  threshold  of  a  new  science  of  the  mind
(Rowlands 2010),  a  science that finds natural
and fruitful connections with the world of hu-
man experience. In this section, I will explore
possible  connections  with  education,  public
policy, and social interaction.

Clark makes two main claims in the final
sections of his article that serve for the basis of
my comments here. First, he suggests that PP
motivates  an  understanding  of  cognitive  pro-
cessing as “maximally context sensitive” (p. 16),
which follows from the property of PP systems
being highly flexible in setting precision weight-
ings for the incoming prediction errors. Flexibil-
ity in weighting precision enables flexibility in
the  deployment  of  processing  resources.  Thus
there  may  be  a  wide  variety  of  cognitive
strategies at our disposal, with a continuous in-
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terplay  between  more  costly  and  less  costly
strategies. Second, he addresses the challenge of
explaining why humans have unique  cognitive
powers unavailable to non-human animals who
have the same fundamental PP architecture. In
response to this challenge, Clark suggests that
our abilities may be due to our patterns of so-
cial interaction as well as our construction of ar-
tifacts  and  “designer  environments”  (p.  19).
Taken together, these two claims can be used to
inform practical decisions in a number of ways.

Begin with education. Educational psycho-
logy is a broad and important area of research.
PP suggests  new ways of  approaching human
learning, ways that might depart from the re-
ceived views that have guided educational psy-
chology. I cannot begin to engage with this huge
issue here, but I would like to offer one quick
example.  One fairly  well-known application of
educational psychology is in the concept of scaf-
folded learning, which is built on work by Lev
Vygotsky and Jerome Bruner. As it is used now,
scaffolded  learning involves  providing  the stu-
dent with helpful aids at particular stages of the
learning process. These aids could include hav-
ing a teacher present to give helpful hints, work-
ing in  small  groups,  and various artifacts  de-
signed with the intention of anticipating stages
at  which  the  student  will  need  help,  such  as
visual aids, models, or tools. Clark himself men-
tions the abacus,  which is  central  example of
scaffolded learning (p. 19). More generally, scaf-
folded  learning  is  a  good  example  of  what
Richard Menary has  called  “cognitive
practices,” which he defines as “manipulations
of an external representation to complete a cog-
nitive task” (2010, p. 238). 

If  PP is  right,  then the learning process
could be optimized by designing environments
in order to provide the cycle of action and per-
ception with precisely controlled feedback (pre-
diction  error).  With  the  growing  commercial
availability  of  immersive  virtual  reality  equip-
ment, educators could design learning environ-
ments (or help students design their own envir-
onments) without the messy constraints of the
physical  world.  PP may give  us  a  framework
with  which  to  understand—and  predict—the
detailed bodily movements of subjects as they

attempt to minimize their own prediction error.
Using  this  framework,  we can design  systems
that  would  optimize  skill  acquisition  by  effi-
ciently predicting the errors that learners will
make. This method could be fruitfully applied
in  the  abstract  (mathematics),  the  concrete
(skiing),  and  in-between  (foreign  languages).
Along these lines, the insights of PP, together
with emerging technology, can lead to powerful
new educational techniques.

Psychology is also applied in some areas of
public  policy.  Clark  mentions  that  PP  chal-
lenges Kahneman’s well-known model of human
thinking as consisting of a fast automatic sys-
tem and a slower deliberative system (p. 18).
Kahneman’s model has been applied as a basis
for influential recommendations about laws and
public  policy  in  the  United States  (Thaler &
Sunstein 2008;  Sunstein 2014). If PP homes in
on a more accurate model of the thinking pro-
cess, then we ought to use it, rather than (or as
a complement to?) the dual systems model as a
basis for policy making. Clark’s interpretation
of PP suggests that we have a highly flexible
range  of  cognitive  systems,  not  limited  to
Kahneman’s two.

For  example,  one  application  of  Kahne-
man’s  model  might  involve  the installation  of
environmental elements meant to appeal to the
fast thinking system, to “nudge” agents towards
making decisions in their best interest. If Clark
is correct, we might consider even more sophist-
icated environmental features that have the goal
of helping agents to deploy their range of cog-
nitive strategies more efficiently. Clark’s ideas of
context  sensitivity  and  designer  environments
are  both  relevant  here.  As  a  society  we may
wish somehow to create environments and con-
texts that take advantage of the large repertoire
of cognitive strategies available to us, according
to Clark’s version of PP (see Levy 2012, for ex-
ample).

The final topic I’d like to mention in this
section  is  what  is  best  described  in  general
terms as social interaction. I mean to indicate a
number of related topics here, but the main is-
sue is how PP might relate to the well-known
philosophical topic of the way in which we un-
derstand and explain our behavior to one an-
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other.  Recall,  for  instance,  Donald Davidson’s
(1963) claim that our explanation of our beha-
vior in terms of reasons is a kind of causal ex-
planation—reasons as causes. On his influential
view,  the  connection  between  reason  and  ac-
tions is a causal connection. In contrast, recall
Paul Churchland’s envisioning of the golden age
of psychology in which we dispose of folk psy-
chological reason-giving in favor of more precise
neurophysiological  explanations  of  behavior
(1981).  According  to  Churchland’s  radical  al-
ternative, the causes of actions are not reasons
as  expressed  using  natural  language.  Instead,
our actions are caused by patterns of neurons
firing,  patterns  that  can  be  described  using
mathematical tools such as a multidimensional
state  space.  In  opposition  to  Churchland’s
grand vision, we have Jerry Fodor’s claim that
the realization of such a vision would be “the
greatest intellectual catastrophe in the history
of our species” (1987, p. xii). Is PP the begin-
ning  of  Churchland’s  grand  vision  coming  to
pass? Is a great intellectual catastrophe loom-
ing? 

On one hand,  PP seems like an obvious
departure from folk psychology: Try explaining
your X-ing to someone by claiming that you X-
ed in order to minimize prediction error!  One
big issue here will be the way in which we think
about agency itself.  It  seems mistaken to say
that  minimizing  prediction  error  is  something
done by an agent. Such a process seems to be
better described as occurring sub-personally. On
the other hand, it is not inconceivable that pro-
positional attitudes can capture the dynamics of
prediction  error  minimization  on  a  suitably
coarse-grained  level,  perhaps  along  the  lines
suggested  using  symbolic  dynamics  (Dale &
Spivey 2005;  Atmanspacher &  beim Graben
2007; Spivey 2007, Ch. 10). I suggest that these
fascinating issues warrant further investigation.
In particular, further investigation ought to in-
corporate  Clark’s  ideas  of  maximal  context
sensitivity and the importance of designer envir-
onments. 

The  way  in  which  we  understand  each
other’s  behavior  is  also  directly  relevant  for
moral responsibility. Following Peter Strawson’s
seminal  “Freedom and Resentment”  (1962),

philosophers have started thinking about moral
responsibility in terms of our reactions to one
another,  reactions  that  involve  holding  each
other accountable. On one influential view, we
hold each other accountable when our actions
issue from our own reasons-responsive mechan-
isms (Fischer &  Ravizza 1998). On a more re-
cent proposal, holding each other accountable is
best modeled as a kind of conversation (McK-
enna 2012). These proposals depend, in import-
ant ways, on assumptions about human psycho-
logy. In particular, they depend on our practice
of giving reasons for behavior. As PP suggests a
new fundamental underlying principle of beha-
vior,  our  practices  of  holding  each  other  ac-
countable may be approached from a new per-
spective. The new challenge in this area will be
to reconcile (if possible) the practice of giving
reasons, on one hand, with PP’s account of be-
havior  in  terms  of  error  minimization  on  the
other. 

5 Conclusion 

The main theme of my commentary might ap-
pear to be driven by an overexcited optimism
for  the  new  theory.  To  be  clear,  I  have  not
claimed that PP is correct. Even its main pro-
ponents are quick to point out that important
open  issues  remain.  My  claim  is  that  it  is
worthwhile to consider the full implications of
PP, given the convincing evidence presented so
far. In this commentary, I have tried to suggest
some of the implications that have not yet been
mentioned—implications for perceptual content,
consciousness,  and  applied  cognitive  neuros-
cience. These implications can be summarized
as follows:

1. PP urges an organism-relative conception of
perceptual content.

2. Historical  a priori accounts of the structure
of  perceptual  experience  converge  with res-
ults from PP.

3. There are a number of areas in which PP can
find important practical applications.

The final  section includes some challenges for
future research. The main challenge is one that
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has  been  familiar  in  one  form or  another  for
several decades in the philosophy of mind. This
challenge is to address the tension between the
way in which we understand and explain our
behavior using natural language, on one hand,
and our best  theory of  human behavior  from
cognitive neuroscience, which, arguably, is PP,
on the other hand. In closing I should note that
even if key elements of PP are eventually rejec-
ted, it might still turn out that our best model
of the mind supports some of the themes I have
been discussing.
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Michael Madary’s visionary and incisive commentary brings into clear and pro-
ductive focus some of the deepest, potentially most transformative, implications of
the Predictive Processing (PP) framework. A key thread running through the com-
mentary concerns the active and “organism-relative” nature of the inner states un-
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entational contents? The answer is not clear-cut. I end by suggesting that we
have here moved so far from a once-standard complex of ideas concerning the
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debates concerning the existence, nature, and role of “internal representations”
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1 Organism-relative content

I’m hugely indebted to Michael Madary for his
visionary  and  incisive  commentary.  The  com-
mentary covers three topics – the nature of per-
ceptual content, the structure of experience, and
some practical implications of the PP (Predictive
Processing) framework. Each one deserves a full-
length paper  in  reply,  but  I  will  restrict  these
brief comments to the first topic – the nature of
perceptual content. Should the PP vision prove
correct,  Madary suggests,  this  would transform
our understanding of the nature and role of per-
ceptual content, with potential consequences for
the larger project of naturalizing mental content.

Driving  such  sweeping  and  radical  reform  is
(Madary argues) the PP emphasis upon the act-
ive contribution of the organism to the generation
of perceptual states. There is an active contribu-
tion, Madary (this collection, section 2) suggests,
insofar as PP depicts perceptual states as “gener-
ated internally and spontaneously by the internal
dynamics of the generative model” (p. 3). 

Such a claim clearly requires careful hand-
ling. For even the most staunchly feedforward
model of perception requires a substantial con-
tribution  from  the  organism.  It  is  thus  the
nature, not the existence, of that contribution
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that  must  make  the  difference.  Elaborating
upon this, Madary notes that ongoing endogen-
ous activity plays a leading role in the PP story.
One might say: the organism’s generative model
(more  on  which  later)  is  already  active,  at-
tempting to predict the incoming sensory flow.
The flow of incoming information is thus rap-
idly flipped into a flow tracking “unexpected sa-
lient deviation”. Identical inputs may thus result
in very different perceptual states as predictions
alter  and  evolve.  An  important  consequence,
highlighted by Madary, is that different histor-
ies  of  interaction  will  thus  result  in  different
perceptual  contents  being  computed  for  the
very  same  inputs.  Different  species,  different
niches,  differences  of  bodily  form,  and  differ-
ences of proximal goals and of personal history
are all thus apt (to varying degrees) to trans-
form what  is  being  predicted,  and  hence  the
contents  properly  delivered  by  the  perceptual
process.

Those contents are further transformed by
a second feature of the PP account: the active
selection of perceptual inputs. For at the most
fundamental level, the PP story does not depict
perception as a process of building a representa-
tion of the external world at all. Instead, it de-
picts perception as just one part of a cohesive
strategy for keeping an organism within a kind
of “window of viability”. To this end the active
organism both predicts and selects the evolving
sensory flow, moving its body and sensory or-
gans so as to expose itself to the sensory stimu-
lations that it predicts. In this way, some of our
predictions act as self-fulfilling prophecies,  en-
abling  us  to  harvest  the  predicted  sensory
streams. These two features (endogenous activ-
ity  and the  self-selection  of  the  sensory flow)
place  PP  just  about  maximally  distant  from
traditional,  passive  “feedforward  hierarchy”
stories. They are rather (as Mike Anderson once
commented to me) the ultimate expression of
the “active perception” program.

Here too, though, we should be careful to
nuance  our story  correctly.  For part  of  main-
taining ourselves in a long-term window of viab-
ility may involve not just seeking out the sens-
ory flows we predict, but the active elicitation
of many that we don’t! PP may, in fact, man-

date all manner of short-term explorations and
self-destabilizations. But such delicacies (though
critically  important-  see  Clark (in press)
chapters 8 and 9) may safely be left for another
day.  The  present  upshot  (Madary this collec-
tion, section 2) is simply that PP, instead of de-
picting perception as a mechanism for revealing
“what is where” in the external world, turns out
to  be  a  mechanism for  engaging  the  external
world in ways that say as much about the or-
ganism (and its own history) as they do about
the world outside. To naturalize intentionality,
then, “all” we need do is display the mechan-
isms by which such ongoing viability-preserving
engagements are enabled, and make intelligible
that such mechanisms can deliver the rich and
varied grip upon the world that we humans en-
joy. This, of course, is exactly what PP sets out
to achieve.

2 Structural coupling and the bringing 
forth of worlds1

Madary notes, more or less in passing, that the
PP vision of “organism-relative perceptual con-
tent” bears a close resemblance to views that
have been defended under the broad banner of
“enactivism”.  I  want to pick  up on this  hint,
and suggest that the PP account actually sets
the scene for peace to be declared between the
once-warring camps of representationalism and
enactivism.  Thus  consider  the  mysterious-
sounding notion of “enacting a world”, as that
notion appears in  Varela et al. (1991)2.  Varela
et al. write that:

The overall concern of an enactive approach
to perception is not to determine how some
perceiver-independent  world  is  to  be  re-
covered; it is, rather, to determine the com-
mon principles  or  lawful  linkages between
sensory and motor systems that explain how

1 Parts of this section condense and draw upon materials from Clark
(in press).

2 There is now a large, and not altogether unified, literature on enac-
tion. For our purposes, however, it will suffice to consider only the
classic statement by Varela et al. (1991). Important contributions to
the larger space of enactivist, and enactivist-inspired, theorizing in-
clude Noë (2004, 2010, this collection), Thompson (2010), and Froese
&  Di  Paolo (2011).  The  edited  volume  by  Stewart et  al. (2010)
provides an excellent window onto much of this larger space.
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action can be perceptually-guided in a per-
ceiver-dependent world. (1991, p. 173)

This kind of relation is described by  Varela et
al. as one of “structural coupling” in which “the
species  brings  forth  and specifies  its  own do-
main of problems” (1991, p. 198) and in that
sense “enacts” or brings forth (1991, p. 205) its
own world. In discussing these matters, Varela
et al. are also concerned to stress that the relev-
ant histories of structural coupling may select
what they describe as  “non-optimal” features,
traits, and behaviors: ones that involve “satis-
ficing” (see Simon 1956) where that means set-
tling  for  whatever  “good  enough”  solution  or
structure  “has  sufficient  integrity  to  persist”
(Varela et al. 1991, p. 196). PP, I will now sug-
gest, has the resources to cash these enactivist
cheques, depicting the organism and the organ-
ism-salient world as bound together in a process
of  mutual  specification  in  which  the  simplest
approximations apt to support a history of vi-
able interaction are the ones that are learnt, se-
lected, and maintained. 

The simplest way in which a PP-style or-
ganism might be said to actively construct its
world is by sampling. Action, as Madary noted,
serves  perception  by  moving  the  body  and
sense-organs around in ways that aim to “serve
up” predicted sequences of high-reliability, task-
relevant information. In this way, different or-
ganisms and individuals may selectively sample
in ways that both actively construct and con-
tinuously  confirm  the  existence  of  different
“worlds”.  It  is  in  this  sense  that,  as  Friston,
Adams, and Montague (Friston et al. 2012, p.
22) comment, our implicit and explicit models
might be said to “create their own data”.3 Fur-
3 Such a process repeats at several organizational scales. Thus we humans do

not merely sample some natural environment. We also structure that envir-
onment by building material artifacts (from homes to highways), creating
cultural practices and institutions, and trading in all manner of symbolic
and notational props, aids, and scaffoldings. Some of our practices and in-
stitutions are also designed to train us to sample our human-built environ-
ment more effectively – examples would include sports practice, training in
the use of specific tools and software, learning to speed-read, and many,
many more. Finally, some of our technological infrastructure is now self-al-
tering in ways that are designed to reduce the load on the predictive agent,
learning from our past behaviors and searches so as to serve up the right
options at the right time. In all these ways, and at all these interacting
scales of space and time, we build and selectively sample the very worlds
that - in iterated bouts of statistically-sensitive interaction - install the gen-
erative models that we bring to bear upon them.

thermore, the PP framework depicts perception
and  action  as  a  single  (neurally  distributed)
process  whose goal  is  the reduction of  salient
prediction-error. To be sure, “sensory” and “mo-
tor” systems specialize in different predictions.
But  the  old  image of  sensory  information  IN
and motor output OUT is here abandoned. In-
stead,  there  is  a  unified  sensorimotor  system
aiming to predict the full range of sensory in-
puts – inputs that are often at least partially
self-selected  and  that  include  exteroceptive,
proprioceptive (action-determining), and intero-
ceptive elements. Nor is it just the sensorimotor
system that is here in play. Instead, the whole
embodied  organism  (as  Madary  notes)  is
treated as a prediction-error minimizing device. 

The  task  of  the  generative  model  in  all
these settings is (as noted in  Clark this collec-
tion)  to  capture  the  simplest  approximations
that will support the actions required to do the
job.  And  that  means  taking  into  account
whatever work can be done by a creature’s mor-
phology,  physical  actions,  and  socio-technolo-
gical  surroundings.  Such  approximations  are
constrained  to  “provide  the  simplest  (most
parsimonious)  explanations  for  sampled  out-
comes”  (Friston et  al. 2012,  p.  22).  This  re-
spects  the  enactivist’s  stress  on  biological
frugality, satisficing, and the ubiquity of simple
but adequate solutions that make the most of
brain, body, and world. At this point, all  the
positive  enactivist  cheques  mentioned  above
have been cashed. 

But  one  outstanding  debt  remains.  To
broker real and lasting peace, we must tiptoe
bravely  back  into  some muddy and contested
territory: the smoking battleground of the Rep-
resentation wars. 

3 Representations: What are they good 
for?

PP, Madary suggests,  provides a new kind of
lever for naturalizing intentionality and mental
content. Might it also offer a new perspective
upon the vexed topic of internal representation?
Varela et al. are explicit that, on the enactivist
conception “cognition is no longer seen as prob-
lem  solving  on  the  basis  of  representations”
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(1991, p. 205). PP, however, deals extensively in
internal models – models that may (see  Clark
this collection) be rich, frugal, and all points in-
between. The role of such models is to control
action by predicting and bringing about com-
plex plays of sensory data. This, the enactivist
might fear, is where our promising story about
neural processing goes conceptually astray. Why
not simply ditch the talk of inner models and
internal  representations  and  stay  on  the  true
path of enactivist virtue?

This  issue  requires  a  lot  more  discussion
than I  can attempt here.4 Nonetheless,  the re-
maining distance between PP and the enactivist
may not be as great as that bald opposition sug-
gests. We can begin by reminding ourselves that
PP, although it  openly  trades in  talk of  inner
models  and  representations,  invokes  representa-
tions  that  are  action-oriented  through  and
through. These are representations that are fun-
damentally in the business of serving up actions
within the context of rolling sensorimotor cycles.
Such  representations  aim to  engage the  world,
rather than to depict it in some action-neutral
fashion, and they are firmly rooted in the history
of organism-environment interactions that served
up  the  sensory  stimulations  that  installed  the
probabilistic generative model. What is on offer is
thus just about maximally distant from a passive
(“mirror of nature” – see Rorty 1979) story about
the possible fit between model and world. For the
test of a good model is how well it enables the or-
ganism to engage the world in a rolling cycle of
actions that maintain it within a window of viab-
ility. The better the engagements, the lower the
information-theoretic free energy (this is intuitive,
since more of the system’s resources are being put
to “effective work” in engaging the world). Pre-
diction  error  reports  this  information-theoretic
free energy, which is mathematically constructed
so as always to be greater than “surprisal” (where
this names the sub-personally computed implaus-
ibility of some sensory state given a model of the
world – see  Tribus 1961). Notice also that the
prediction  task  uses  only  information  clearly
4 I  have  engaged  such  arguments  at  length  elsewhere  –  see  Clark

(1989,  1997,  2008,  2012). For sustained arguments  against the ex-
planatory  appeal  to  internal  representation,  see  Ramsey (2007),
Chemero (2009),  Hutto & Myin (2013). For some useful discussion,
see Sprevak (2010, 2013), Gallagher et al. (2013).

available  to  the  organism,  and  is  ultimately
defined over the energies that impinge on the or-
ganism’s  sensory surfaces.  But finding the best
ways to predict those energetic impacts can (as
substantial  bodies  of  work in  machine learning
amply demonstrate5) yield a structured grip upon
a world of interacting causes. 

This notion of a  structured  grip is import-
ant. Early connectionist networks were famously
challenged (Fodor & Pylyshyn 1988) by the need
to deal with structure – they were unable to cap-
ture  part-whole  hierarchies,  or  complex  nested
structures in which larger wholes embed smaller
components,  each of  which may itself  be some
kind  of  structured  entity.  For  example,  a  city
scene may consist of a street populated by shops
and cars and people, each of which is also a struc-
tured whole in its own right. Classical approaches
benefitted from an easy way of dealing with such
issues.  There,  digital  objects  (symbol  strings)
could  be  composed  of  other  symbols,  and
equipped with pointers to further bodies of in-
formation. This apparatus was (and remains) ex-
tremely biologically suspect, but it enabled nest-
ing, sharing, and recombination on a grand scale
– see Hinton (1990) for discussion. Such systems
could  easily  capture  structured  (nested,  often
hierarchical)  relationships in a manner that al-
lowed for easy sharing and recombination of ele-
ments. But they proved brittle and inflexible in
other ways, failing to display fluid context-sensit-
ive responsiveness, and floundering when required
to  guide  behavior  in  time-pressured  real-world
settings.6 

Connectionist research has since spawned a
variety of methods – some more successful than
others - for dealing with structure in various do-
mains. At the same time, work in robotics and in
embodied and situated cognitive science has ex-
plored the many ways in which structure in the
environment (including the highly structured arti-
ficial environments of text and external symbol
systems) could be exploited so as to reap some of
the benefits associated with classical forms of in-

5 For reviews and discussions, see Bengio (2009), Huang & Rao (2011),
Hinton (2007), and Clark (in press).

6 For a sustained discussion of these failings, and the attractions of
connectionist (and post-connectionist) alternatives, see  Clark (1989,
1993,  2014),  Bechtel &  Abrahamsen (2002),  Pfeifer &  Bongard
(2007).
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ner encoding, without (it was hoped) the associ-
ated costs of biological implausibility – see, for ex-
ample,  Pfeifer &  Bongard (2007).  Perhaps  the
combination  of  a  few  technical  patches  and  a
much richer reliance upon the use of structured
external  resources  would  address  the  worries
about dealing with structure? Such was the hope
of many, myself included. 

On this project, the jury is still out. But PP
can embrace these insights and economies while
providing a more powerful overall solution. For it
offers  a  biologically  plausible  means,  consistent
(we saw) with as much reliance on external scaf-
folding as possible, of internally encoding and de-
ploying richly structured bodies  of  information.
This is because each PP level (perhaps these cor-
respond to  cortical  columns  –  this  is  an  open
question) treats activity at the level below as if it
were sensory data, and learns compressed meth-
ods to predict those unfolding patterns. This res-
ults in a very natural extraction of nested struc-
ture in the causes of the input signal, as different
levels  are progressively  exposed to different  re-
codings, and re-re-codings of the original sensory
information. These re-re-codings (I think of them
as  representational  re-descriptions  in  much  the
sense  of  Karmiloff-Smith 1992)  enable  us,  as
agents, to lock us onto worldly causes that are
ever more recondite, capturing regularities visible
only in patterns spread far in space and time.
Patterns  such  as  weather  fronts,  persons,  elec-
tions,  marriages,  promises,  and  soccer  games.
Such patterns are the stuff of which human lives,
and human mental lives, are made. What locks
the  agent on to these familiar patterns is, how-
ever,  the  whole  multi--level  processing  device
(sometimes, it is the whole machine in action).
That machine works (if  PP is correct) because
each level is driven to try to find a compressed
way to predict activity at the level below, all the
way out to the sensory peripheries. These nested
compressions, discovered and annealed in the fur-
nace of action, are what I (following Hinton 1990)
would like to call “internal representations”. 

What are the  contents  of the many states
governed by the resulting structured, multi-level,
action-oriented  probabilistic  generative  models?
The generative model issues predictions that es-
timate various identifiable worldly states (includ-

ing states of the body, and the mental states of
other agents).7 But it is also necessary, as we saw
in Clark (this collection) to estimate the context-
variable reliability (precision) of the neural estim-
ations themselves. It is  these precision-weighted
estimates that drive action, and it is action that
then samples the scene, delivering percepts that
select more actions. Such looping complexities ex-
acerbate an important consequence that Madary
nicely notes. They make it even harder (perhaps
impossible) adequately to capture the contents or
the cognitive roles of many key inner states and
processes using the terms and vocabulary of or-
dinary  daily  speech.  That  vocabulary  is  “de-
signed”  for  communication,  and  (perhaps)  for
various  forms  of  cognitive  self-stimulation  (see
Clark 2008). The probabilistic generative model,
by contrast, is designed to engage the world in
rolling, uncertainty-modulated, cycles of percep-
tion and action. Nonetheless, high-level states of
the generative model will  target large-scale,  in-
creasingly invariant patterns in space and time,
corresponding to (and allowing us to keep track
of)  specific  individuals,  properties,  and  events
despite  large  moment-by-moment  variations  in
the stream of sensory stimulation. Unpacked via
cascades  of  descending  prediction,  such  higher-
level states simultaneously inform both perception
and action, locking them into continuous circular
causal flows. Instead of simply describing “how
the  world  is”,  these  models  -  even  when  con-
sidered at those “higher” more abstract levels -
are geared to engaging those aspects of the world
that matter to us. They are delivering a grip on
the patterns that matter for the interactions that
matter. 

Could  we  perhaps  (especially  given  the
likely difficulties  in  specifying  intermediate-level
contents in natural-language terms) have told our
story  in  entirely  non-representational  terms,
without  invoking  the  concept  of  a  hierarchical
probabilistic generative model at all? One should
always beware of sweeping assertions about what
might, one day, be explanatorily possible! But as
things stand, I simply don’t see how this is to be
achieved. For it is surely that very model-invoking

7 Bayesian perceptual and sensorimotor psychology (see for example,
Rescorla 2013;  Körding &  Wolpert 2006) already has much to say
about just what worldly and bodily states these may be.
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schema that allows us to understand how it is
that these looping dynamical regimes arise and
enable such spectacular results. The regimes arise
and  succeed  because  the  system  self-organizes
around prediction-error so as to capture organ-
ism-salient patterns, at various scales of space and
time, in the (partially self-created) input stream.
These  patterns  specify  complex,  inter-animated
structures of bodily and worldly causes. Subtract
this guiding vision and what remains is just the
picture  of  complex  looping  dynamics  spanning
brain,  body,  and  world.  Consider  those  same
looping dynamics from the multi-level model-in-
voking explanatory perspective afforded by PP,
however,  and  many  things  fall  naturally  into
place. We see how statistically-driven learning can
unearth interacting distal  and bodily causes  in
the first place, revealing a structured world of hu-
man-sized opportunities for action; we see why,
and exactly how, perception and action can be
co-constructed  and co-determining;  and we un-
ravel  the  precise  (and  happily  un-mysterious)
sense in which organisms may be said to bring
forth their worlds. 

4 Predicting peace: An end to the war 
over internal representation

Dynamically speaking, the whole embodied, act-
ive system here self-organizes around the organis-
mically-computable  quantity  “prediction  error”.
This is what delivers that multi-level, multi-area,
grip on the evolving sensory barrage – a grip that
must span multiple spatial and temporal scales.
Such a grip simultaneously determines perception
and action,  and it  selects  (enacts)  the ongoing
stream of sensory bombardment itself. The gener-
ative model that here issues sensory predictions is
thus  nothing  but  that  multi-level,  multi-area8,
multi-scale, body-and-action involving grip on the
unfolding sensory stream. To achieve that grip is

8 The point about multiple areas (not just multiple levels within areas) is
important, but it is often overlooked in philosophical discussions of pre-
dictive processing. Different neural areas are best-suited – by location,
inputs, structure, and/or cell-type - to different kinds of prediction. So
the same overarching PP strategy will yield a complex economy in which
higher-levels predict lower levels, but different areas learn to trade in
very different kinds of prediction. This adds great dynamical complexity
to the picture, and requires some means for sculpting the flow of inform-
ation among areas. I touch on these issue in Clark (this collection). But
for a much fuller exploration, see Clark (in press). 

to  know  the  structured  and  meaningful  world
that we encounter in experience and action. 

Is this an inner economy bloated with rep-
resentations, detached from the world? Not at all.
This is an inner economy geared for action, whose
inner states bear contents in virtue of the way
they lock embodied agents onto properties and
features of their worlds. But it is simultaneously a
structured  economy  built  of  nested  systems,
whose communal project is both to model and en-
gage the (organism-relative) world.
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